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Notation

Index | Total | Notation

Individual ] Nt j = 1, e, NGt
Unique _
combination f F f=1....F
Area i M i=1,....M
Area (alt.) k M k=1,....M
Time t T t=1,...,T
Age a A a=1,..., A
Covariate q Q q=1,...,Q
Posterior draws | d D d=1,...,D
Health state h H h=1,....H

Table 1: Dictionary of indices used in this report.

Notation | Subscript Superscript
Observed data Y any st
Fitted values W any (d), nz
Expected counts E it (d)
Intercept «@ (d), nz
Design matrix of fixed effects X any
Design matrix of random effects (see G any
Coefficients for fixed effects Jé; q (d)
Coefficients for fixed effects (see|8.8) BY q (d)
Coefficients for random effects (see(S.1) (d)
Standard normal random variables any any of v, 9, s,v
Spatial random effects (ICAR) 1
Unstructured random effects i
Combined spatial random effects i
Unstructured and structured mixing parameter
Scaling (BYM2)
Temporal random effects (ICAR) t
Space-time random effects it
Spatial weight matrix S ik
Temporal weight matrix ik

Variance

Survey weights

Population

Sample size

Disability weight

Life expectancy

Probability

Direct estimate (from survey)
Sampling variance (of p)

2,33 O 3 =8 qwésoq\Q T DS wN >
H

any of v, 9, s,v, ¢
jit

any

any

h

a

any

it

it

(d)
u
u

Table 2: Definitions of the notation used for specifying the Bayesian models in this report.




1 INTRODUCTION 7

1 Introduction

The Department of Health Western Australia (DOHWA) is currently working on a modelling
and mapping project to improve health insights in Western Australia. This project aims to
leverage a large quantity of administrative and survey data along with spatio-temporal (ST)
Bayesian models to generate robust small area estimates and measures of uncertainty for a
variety of health metrics for a wide range of conditions and indicators across multiple years.
The goal is to generate smoothed estimates of these health metrics at three geographical
levels; namely health districts (HDs), local government areas (LGAs) and statistical areas
level 2 (SA2s). Finally, health metrics will be provided separately for males, females and
persons and broken down by Aboriginality where the data is available.

The project has access to three distinct types of data, which require different modelsE]
The first and largest is administrative/registry data, which includes cancer incidence, hos-
pitalisations and mortality. These data require spatial and temporal smoothing to meet
issues relating to small counts and populations and to avoid some privacy and confiden-
tiality requirements.

The second type of data are annual Western Australian population health surveys which
will be used to provide prevalence estimates for a variety of health factors, including but not
limited to smoking, diet, alcohol and obesity. These data require more complex modelling,
as non-sampled data must be imputed whilst simultaneously correcting for sampling and
non-response bias in the survey design and collection process.

Finally, mapping metrics related to the burden of disease is required. There is a large
amount of data required to estimate the burden of disease, which include prevalence es-
timates, mortality data, comorbidity adjusted disability weights, and life expectancy esti-
mates.

As the funding agencies for the project, both DOHWA and FrontierSI have contracted
researchers from the Queensland University of Technology (QUT) to explore and assess the
amassed data and recommend suitable Bayesian models. This report provides additional
details based on the recommendations provided in Deliverable 1.

1.1 Structure

To begin with we’ll discuss the details of Bayesian inference and computation (Section [2),
which are critical to drawing valid conclusions from Bayesian models. We’'ll then introduce
Bayesian hierarchical models and discuss the details and construction of spatio-temporal
models in general (Section [3). In the following sections, we’ll provide the R code and math
details for the recommended models for the three data types (Sections [6). along with
examples of the data structure and plots of results where necessary. Note that this report
(and the R code contained within it) are not substitutes for the training materials. As such,
the R code in this report cannot be solely used to conduct the modelling.

ISee Figure [22]in Section for an overview flowchart of the data and models.

DOHWA, QUT



1 INTRODUCTION 8

Scattered throughout the report we’'ve included Tech Talk! and Consider! boxes that
aim to briefly highlight any technical or theoretical details that arise from our discussions.
The large appendix (Section [8) includes a brief introduction to the generic mathematical
notation (vectors, matrices, etc) used in this report (Section [8.1), the epidemiology metrics
(Section and details of any computational tricks used. The mathematical notation used
throughout most of this report can be found in Tables [1] and

The Bayesian ST models we discuss in this report have been purposely recommended for
their wide applicability across different data types and conditions. As long as the format
of the data and the outcome is of the correct type (e.g. count or binary), Bayesian ST
models learn the best way to approximate the data, given the model structure we impose.
To ensure a reasonable balance between efficiency, ease of use and appropriateness, the
models we recommend impose enough structure to achieve the goals of the project, but
also the flexibility for the models to learn what is required from the data itself. Thus, this
technical report purposely does not focus on any single condition.

DOHWA, QUT



2 BAYESIAN INFERENCE 9

2 Bayesian Inference

The benefit of Bayesian inference and modelling is its flexibility, probabilistic interpretation
and simple reporting of uncertaintyﬂ Bayesian inference considers model parameters, P,
as random and data, y, as fixed (see Table [3| for a breakdown of the differences between
Bayesian and frequentist inference). Unlike in frequentist inference, where the parameter
estimates are those that maximise the log likelihood, log p (y|P), in Bayesian inference the
parameter estimates are the posterior distributions, p (]P’|y)E|which specifies the distribution
of the parameters of the Bayesian model, given our data, y. The posterior distribution
is a combination of the likelihood, p (y|P), and the prior distribution, p(P). The posterior

distribution is derived using Bayes theorem,

p(y[P)p(B)

2.1
p(y) -1

p(Ply) =

Given that the posterior is a distribution, the model parameters have a natural proba-

bilistic interpretation. For example, Bayesian inference allows us to derive the probability
that a parameter, P, is greater than some value, Pr (P > c|y).

Probability is “long-run frequency”

Probability is “degree of certainty”

p (y|P) is a sampling distribution
(function of y with fixed P)

p (y|P) is a likelihood
(function of P with fixed y)

No prior

prior

p-values
(null hypothesis tests)

Full probability model
available for summary/decisions

Confidence intervals

Credible intervals

Table 3: Some of the core differences between Bayesian and frequentist thinking and inference.

2.1 Computation

Since Bayesian models are often numerically intractable, estimates are generally computed
through an algorithm called Markov Chain Monte Carlo (MCMC) (Gelman et al. |2014a),
which approximates the posterior distribution of our Bayesian models by drawing a very
large number of samples, say D, from p (IP’|y)E| Although there are a wide range of MCMC
algorithms, those proposed in this work rely on methods called random walk or Gibbs
samplingﬁ These methods propose (or step) to new parameter value by comparing the
likelihood of the current value to the proposed value (see the box on page for details
on how to select an appropriate step size). MCMC begins by specifying an initial set of

2Please see the rigorous introduction to Bayesian workflow by Gelman et al. (2020)

3p(.) denotes a probability distribution. For example, p(X) would denote the probability distribution for the
random variable X

40ther methods (e.g. Variational Inference) can be used to obtain the posterior distribution. These methods
can be considerably faster than MCMC methods, but at the cost of accuracy and simplicity.

5Please see Chapter 9 of McElreath (2020) for an intuitive introduction to random walk and Gibbs samplers.

DOHWA, QUT



2 BAYESIAN INFERENCE 10

parameter values, before running a “chain of steps” (technically called a Markov Chain)
with the goal that the entire collection of steps (the posterior draws) will approximate the
true posterior distribution. In this example, D is the number of steps we ask the MCMC
algorithm to take.

MCMC algorithms can provide exact inference for Bayesian models when D is very large.
However, for finite D, say 10,000, the validity of inferences from Bayesian models depends
on whether the algorithm has converged. Technically speaking, convergence refers to the
stabilization of the Markov chain that is used to simulate the posterior distribution. Given
the importance of convergence in Bayesian analysis, convergence must be assessed prior
to drawing any model inferences. Unfortunately, in practice, it is impossible to validate
whether an MCMC algorithm has converged to the true posterior. That said, there are two
pivotal checks and corresponding metrics we recommend using to have confidence in the
validity of the MCMC output and resulting inferences.

R-hat It is recommended to run multiple, independent MCMC algorithms for the same
model, called chains. By starting each chain with a different set of initial parameter values,
we can ascertain whether convergence is acceptable by comparing the behaviour of the
posterior draws from different chains. Well behaved chains should converge to the same
area of the parameter space regardless of the initial parameter values used. Separate chains
that converge to the same density are described as “mixing well”.

Note that a single chain can also be used but must be run for a long time compared to
the shorter runs we can use for each of multiple chains. Furthermore, current MCMC diag-
nostics rely on the assessment between chains (Vehtari et al. 2021), which makes multiple-
chain approaches preferable. The posterior draws from MCMC are the combined draws
from multiple chains or the draws from a single chain.

The R, which is always greater or equal to 1, is used for these assessments ﬁ An R=1
denotes convergence and is desirable for all parameters of a model. Vehtari et al. (2021)
suggest a softer and more reasonable cutoff for acceptable convergence; R < 1.01. We use
the recommendation by Vehtari et al. (2021).

Effective sample size (ESS) Given the stepping method described above, the posterior
draws are not independent — even though we would like them to be. A good measure of
the efficiency of an MCMC algorithm is the effective sample size (ESS). The ESS considers
the dependence in the posteriors and estimates the number of independent posterior draws
that our D draws represent. Like the R, the ESS is a good measure of convergence and is
a standard output from Bayesian software

A good check of the correlation in the posterior draws is the autocorrelation plot. An
example can be found in Figure [2| In general, if a parameter has been effectively sampled,
we should see an autocorrelation plot similar to the left or middle columns (sigma2_theta

6Readers interested in the formula behind R should refer to Vehtari et al. (2021).
7Readers interested in the formula behind ESS should refer to Vehtari et al. (2021).

DOHWA, QUT



2 BAYESIAN INFERENCE 11

and sigma2_gamma) in Figure 2] which suggests that even after a single iteration the posterior
draws are close to independent (zero correlation). Observe that the posterior draws on the
right are still reasonably strongly correlated even after 5 iterations. This suggests that
sigma2 _delta is particularly difficult to sample and may have low ESS. See Section for
some recommendations on how to improve convergence and ESS.

A highly correlated or inefficient MCMC algorithm would give very low values of ESS. In
most cases, ESS can be artificially increased by taking more posterior draws (e.g. setting D
higher). However, these decisions must be balanced with the computation cost. An efficient
MCMC algorithm should achieve an ESS as close to D as possible - indicating completely
independent draws. Note that the accuracy of any inference drawn from MCMC depends
on the ESS. A crude rule of thumb used by rstan (Stan Development Team 2022) is that all
model parameters should have ESS larger than the number of chains multiplied by 100. For
example, if one is to run 4 independent chains, the recommended cutoff is for all parameters
to have an ESS larger than 400.

Tech talk! Step size and adaption

For these stepping methods, the size of the step is very important and can have a
drastic effect on the efficiency and validity of the MCMC algorithm. Fortunately, in
practice, we do not need to manually select the step size. The software recommended
in this project uses an automatic adaption scheme that selects the most efficient step
size for the model and data, before producing usable posterior draws. This adaptive
period of the MCMC algorithm is called the burn-in. Posterior draws produced during
burn-in should not be used for inference and are generally discarded.

Assessing convergence In Figure [I] we display trace plots of the posterior draws of a
single parameter: the mean of some continuous data. Trace plots show the evolution of the
posterior draws during the algorithm and are very helpful tools to ascertain the convergence
of our MCMC algorithms. In plot (a) and (b) of Figure |1} we use a poorly optimised step size
while plots (c) and (d) use a well-chosen step size.

In plot (a) the posterior draws move extremely slowly toward the true value, indicating
very slow and poor mixing. We see extremely low ESS and a very large R, both indicating
that the chains have not mixed; we should not trust the posterior draws. The core problem
in plot (a) is that the posterior draws are highly correlated given the poorly chosen step size.
One can still obtain convergence with this step size, but must dramatically increase the
number of posterior draws, D.

In plot (b) of Figure [1] we increase D tenfold and also thin the chains by 100. Thinning,
in this case, involves discarding every 1-99th draw and keeping only each hundredth in the
hope that after 100 draws, samples will be much less correlatedﬁ Although the trace plot

8Thinning by 100 is generally not advisable as this can indicate a problem with the model. In practice, thinning
between 10-20 is usual.

DOHWA, QUT



2 BAYESIAN INFERENCE 12

and convergence diagnostics (R and ESS) in plot (b) suggest convergence, computation took
100 times longer than that for plot (a). Similar to plot (b), plot (d) in Figure [1| shows very
good convergence. The well optimised MCMC algorithm has provided almost independent
posterior draws for a fraction of the computational cost required to obtain the draws in
plot (b). Plot (c) in Figure [1]|is another example of poor convergence. However, unlike in
plot (a) where our reason for claiming non-convergence was due to poor mixing, the draws
presented in plot (c) should not be trusted because each chain has converged to a different
area of the parameter space. The convergence diagnostics highlight the issue as the ESS is
very low and R is very high.

The illustrations in this section are pivotal to understanding the importance of Bayesian
computation in applications of Bayesian modelling. We observed that a well optimised
MCMC algorithm can provide substantially faster and more accurate inferenceﬂ Note that
in the past decade there have been significant improvements in MCMC algorithms, with the
current state-of-the-art being implemented in Stan (Stan Development Team [2022).

sigma2_theta sigma2_gamma sigma2_delta

0.5+ N

0.0

1.0

0.54 N

0.0

1.0 4

Autocorrelation

0.54 w

0.0

1.0

0.54 IS

0.0

Figure 2: Example of an autocorrelation plot for three parameters (columns) across 4 chains (rows). Autocorrela-
tion plots describe the correlation between draws in the chains. The z-axis describes the lag number of iterations
(after thinning), while the y-axis gives the correlation. For example, the bar at lag 5 gives the average correlation
of the posterior draws that are 5 samples apart.

9The term 'better’ here refers to the quality of the posterior draws in terms of efficiency and accuracy.

DOHWA, QUT
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Figure 1: Trace plot of a single parameter (mean of continuous data) estimated using a simple random walk MCMC

algorithm (D = 2,000 draws for each of 4 chains).

Each plot has the number of iterations, D, thinning value,

effective sample size (ESS) and R. The initial values for the algorithm are 2,3,5,6 and the dotted line represents
the true parameter value from the simulated data. Plot (a) illustrates non convergence because of poor mixing.
Plot (b) illustrates convergence, but uses D = 200, 000 posterior draws with 100 thinning rather than D = 2000 like
the other three plots. Plot (c) illustrates non convergence because the chains have converged to different parameter
values. Plot (d) illustrates good convergence of the MCMC algorithm.

DOHWA, QUT



2 BAYESIAN INFERENCE 14

Improving convergence As we've shown, convergence is essential to drawing valid infer-
ence from Bayesian models fitted via MCMC. Advanced users may wish to apply a range
of computational tricks, but in most situations convergence can be improved through the
following:

+® Increase D (i.e. run the algorithm for longer)

*®* Increase the number of iterations for burn-in

#* Increase the level of thinnin (see Section

#* Use more informative initial values (e.g. taken from frequentist models)

*®* To ascertain which component/s of the model is causing convergence problems, we
recommend reducing the complexity of the model (e.g. dropping random effects or
fixed effects) until convergence is achieved.

¢ Increase the frequency of adaption (see the box on page

** See the box on page [41|for more specific help

Please see Section for example Bayesian software output with annotations.

2.2 Inference

Unlike frequentist model estimation, where model output is generally comprised of point
estimates, standard errors and p-values, the output of Bayesian models estimated using
MCMC are the D posterior draws. With access to the posterior draws, a Bayesiarff] can cal-
culate summary metrics (e.g. means, medians and quantiles), or apply any transformation
to derive posterior distributions for other variables of interest. Below we describe the two
core outputs required for this project: point estimates and measures of uncertainty.

2.2.1 Point estimate

In Bayesian inference a point estimate, 6, for a single parameter, say 6, can be calculated
using the empirical mean (or median) of the corresponding posterior draws for that param-
eter,

where 0(4) is the dth posterior draw of # from our Bayesian model. Details of this notation
can be found in Section [8.11

I0Note that increasing the thinning amount without also increasing D, will result in fewer usable draws.
llCrudely, a “Bayesian” indicates any scientist who takes a Bayesian perspective when conducting statistical
analysis.

DOHWA, QUT



2 BAYESIAN INFERENCE 15

2.2.2 Uncertainty

There are three common methods for reporting the uncertainty of Bayesian model param-
eters: posterior standard deviations, credible intervals and exceedance probabilities. The
uncertainty measures we recommend are derived from the posterior draws directly. Thus,
given that one can derive posterior draws for any quantity of interest (age-standardised
rates, years of life lost, prevalence, etc), one can also calculate uncertainty measures for all
metrics in the same manner.

First is the standard deviation of the posterior draws, which is referred to as the posterior
standard deviation. For relatively symmetric posterior distributions, the posterior standard
deviation may be similar to a frequentist standard error. Note that for posterior distribu-
tions that are not approximately symmetric, the posterior standard deviation can be a poor
measure of uncertainty.

The second uncertainty method is the credible interval. Bayesian credible intervals give
an interval which has a 95% chance that the true parameter value lies within it. Credible
intervals can be derived for all model parameters by calculating the empirical quantiles of
the posterior draws. For some parameters, the posterior distribution may be highly skewed
which means the quantile method of deriving credible intervals can be ineffective (see Figure
at capturing the most appropriate interval, in terms of values with the highest plausi-
bility. An alternative interval is the highest density interval (HDI). Unlike quantile credible
intervals, which are symmetric around the median, HDIs cover the parameter values cor-
responding to the highest density of the posterior. For approximately normally distributed
posteriors, HDIs and quantile credible intervals will be very similar. Thus, we recommend
using HDIs where possible. Our user-made function jf$getResultsData() returns HDIs as
default. See Section 2.3 from Gelman et al. (2014a) for a more thorough comparison of
quantile credible intervals and HDIs.

The third measure of uncertainty is exceedance probabilities: the probability of the pos-
terior being above a certain value. These can be derived from the posterior draws using

ézdzl[(ﬂ(d) > c),

where I (09 > ¢) = 1if 0@ is larger than some specified value c[?] For this project, for
example, exceedance probabilities can indicate whether the age-standardised rate (ASR) in a
particular area is significantly higher than the state ASR. Commonly values above 0.80 (i.e.
80% of the posterior) are considered likely to be above, while if the exceedance probability
is below 0.2 (so 80% of the posterior is below the value) it is considered likely to be below.

A variant of exceedance probabilities were used to great effect in the Australian Cancer
Atlas (Duncan et al. [2019). They used the difference in posterior probabilities (DPP),

121(.) is called the indicator function.

DOHWA, QUT



2 BAYESIAN INFERENCE 16

Highest Density Credible Interval

Quantile Credible Interval

Figure 3: Comparison of highest density interval and quantile credible interval for a skewed distribution. The
middle blue vertical line is the median, while the red lines on either side denote the bounds of the intervals.

2

<% ;]1 (0 > c)) ~05

By using the jf£$getDPP(.) function (see Code [I), one can easily derive the exceedance

probabilities and DPPs. The function also returns a binary vector denoting which columns
of draws are significantly different to the null value at the 60% level.

1 # “draws” 1s a matriz with D rows and m_obs columns

2 dpp_obj <- jf$getDPP(draws, null_value = 1, sig_level = 0.60)

4 # Exceedence probability
5 | dpp_obj$EP

7 # DPP
s | dpp_obj$DPP

10 # binary vector of significance
11 # of the DPPs
12 dpp_obj$DPP_sig

R Code 1: Calculating DPP using our user-made function

Please see Section [8.9] for example Bayesian software output with annotations.
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2.3 Goodness-of-fit

Once we deem that our Bayesian model has converged, we recommend some simple model
checks to ensure the results are plausible. These include comparing the observed and
fitted values, examining model residuals and performing posterior predictive checks and
sensitivity analysis.

Observed vs fitted Bayesian inference via MCMC is a difficult task - particularly identify-
ing when a coding error has occurred. It is always recommended to plot the observed data
(e.g. counts or rates) versus the modelled estimates. Note that we do not expect (or wish)
for exact concordance between the observed and modelled estimates — remember the point
of this modelling project is to smooth the data and thus, provide more reliable estimates.

Observed versus fitted plots are a great way to identify any model specification or coding
errors. In our explorations, we always include a diagonal line of equality in all our observed
versus fitted plots, and expect the points to sit either on the line or close to it. Figures
and provide some examples.

Plausibility checks Although comparing the observed and fitted data is a useful check,
for some of the models (Section [5) discussed in this report, we recommend further plau-
sibility checks which are not a purely Bayesian check, but recommended for all statistical
analysis. Plausibility checks are an excellent way to ensure that the specified model is work-
ing as expected and that your code is correct even though no errors were produced by the
software E These checks might include, for example, comparing ASRs or prevalence esti-
mates against remoteness or socioeconomic status or by comparing the posterior standard
deviations of estimates to the corresponding area-by-time population or sample sizes.

Residual plots We recommend examining the relationship between the posterior of the
standardised residuals and the fitted values, pu;, to ensure there are no systematic patterns
in the residuals. Standardised residuals for Poisson models can be derived for the dth
posterior draw using the following formula.

d Yi — N(-d)
r@ = L0 L 2.2)
d

M
To simplify these checks, we suggest taking the median of both the residual and fitted
count draws. Generally, these residual plots should have little pattern across the fitted
counts. Note that for severely sparse count data, residual checks are difficult to interpret,
and one should rely more on posterior predictive checks. See Figure |4| for examples of
residual plots for common and sparse count data.

13Note that incorrectly specified priors in nimble may not throw any errors, thus giving the false pretence of a
correct model.
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Figure 4: Some examples of residual plots for common (a) and sparse (b) count data, where the points on the
plot are posterior medians. Plot (a) is relatively easy to interpret and has no horizontal patterns of concern. On
the other hand, plot (b) is unintuitive and unhelpful. That said, the posterior predictive checks for the sparse
condition, shown in (b), suggest a very good fit for the model.

Sensitivity analysis To ensure our models are robust, prior choices should be investigated
using sensitivity analysis. This is particularly important for priors on model hyperparam-
eters, i.e. hyperpriors (see Section for an example of hyperpriors). The idea is to fit
the same model with different hyperpriorsf_z] and compare the resulting posterior distribu-
tion (Gelman et al. |2020). If the data is sufficiently large and the model is well specified,
the choices of priors and hyperpriors will often have little effect on model inference. How-
ever for some of these complex ST models, hyper/prior choices and sensitivity analyses are
important to ensure that model inference is not strongly dependent on our choice of priors.

Posterior predictive checks Posterior predictive checking (PPC) involves simulating new
data, conditional on the posterior distribution (Gelman et al. |2020). We can then derive a
metric or series of metrics for each set of simulated data and compare these metrics to the
actual data.

For Poisson models, we may be interested in ensuring that our Bayesian ST models
approximate the correct total number of counts. This process can be achieved by using
Code 2] or the following process,

g§‘“ ~ Poisson (@d))

Metric® = 3" i,

14For example, one could change the hyperprior distribution on a variance parameter from a Gamma(2, 0.5) to
a Gamma(2,0.01).
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where the distribution of Metric (across all D) can be compared to the sum of the raw
counts, ). yi(d). Figure illustrates one graphical approach to posterior predictive checking
using the R package bayesplot. Observe how the black vertical lines all sit at the mean of
their corresponding histograms; this indicates that the model is fitting the data very well
(even in this sparse case). Figure [5]can be created using jf$PoissonPPC(df$y, yrep) where
yrep can be derived using Code Note that while bayesplot uses 7'(.) to denote Metric,
we avoid this notation as T is used to denote the total number of time points later in this

report.

# mu_draws 1s a matriz with D rows and n_obs columns
for(i in 1:D){

# yrep: posterior predictive distribution

# yrep ts a matriz with D rows and n_obs columns

yrep[i,] <- rpois(n_obs, mu_draws[i,])

# Alternative method to get posterior
# predictive distribution

yrep <- jf$getPoisson_rep(mu_draws)

# Simple posterior predictive check for the sum of the counts
# return the sum of the counts
sum_y <- function(x) sum(x, na.rm = T)
# apply the above function to each row of yrep
# and then summarize the D values

summary (apply(yrep, 1, sum_y))

R Code 2: Simulating the posterior predictive distribution for a Bayesian Poisson model and conducting a simple

PPC.
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Mean Variance
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Figure 5: Illustration of how posterior predictive distributions can be used to check the fit of a Bayesian Poisson
model. We choose the mean, variance, sum and proportion of zeros as the four metrics to evaluate the model
fit. The four plots each display a histogram, T'(yrep), of the metrics, T'(.), evaluated on the D posterior predictive
draws, yrep. Overlaid on the histograms are solid black lines which are the metrics evaluated on the observed
data, T'(y).

2.4 Bayesian workflow

Now that we have described a variety of important components of Bayesian analysis, we
recommend loosly following a generic order of operations for Bayesian analysis depicted in

Figure [6

1. In the first step, one prepares and formats the data. This step can be conducted in
external software (e.g. SAS).

2. The second step involves the use of MCMC to fit the specified model (Section |2.1).

3. The third and arguably most important step is the goodness-of-fit checks (Section[2.3),
where one ensures that both the model and computation are working as expected. Note
that we have included a cycle between model fitting and goodness-of-fit checks as often
one must repeat these steps several times to arrive at the final model.

4. Once the goodness-of-fit checks are complete, one can complete any post-processing
of the posterior draws from the final model, which generally includes deriving point
estimates and measures of uncertainty for the parameters or epidemiology metrics of
interest (Section [2.2).

Note that the schematic in Figure [6]is an outline, designed to help guide practice.
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DATA PREPARATION

Convergence checks
Posterior predictive checks

Plausibility checks

MODEL FITTING

(]

GOODNESS-OF-FIT

Sensitivity analysis

Observed vs fitted plots

Residual plots

POST-MODEL PROCESSING

Point estimates

Figure 6: This schematic provides an order of operations for Bayesian analysis.

Uncertainty measures
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3 Bayesian spatio-temporal (ST) modelling

Bayesian spatio-temporal models are complex extensions of Bayesian hierarchical/multilevel
models. These methods can reduce the variance and instability of estimates by borrowing
information across both areas and time via intuitive local and global smoothing.

Most Bayesian ST models have five distinct elements. More details can be found in the
following sections.

¢ Intercept: estimates the overall mean across all years and areas in the data,

< Spatial random effect (RE): allows the estimate for each area to deviate from the inter-
cept,

<> Temporal RE: allows the estimate for each year to deviate from the intercept,

X Space-time interaction RE: accommodates any area-specific temporal trends not cap-
tured by either the spatial or temporal RE,

Y . . . . . .
** Fixed effects: adjusts the estimates according to important covariates such as age
group, remoteness and socioeconomic status.

Although there is a large quantity of literature describing different specifications for
the spatial, temporal and space-time REs (Haining and Li 2020; Lawson [2020; Ugarte et
al. [2014), for this project we suggest using the common specifications that have useful
theoretical properties, convenient interpretations, computational efficiency and significant
successful applications in the field (Urdangarin et al. [2022).

Consider! Interpretation of Bayesian estimates

The estimates from Bayesian ST models have the same interpretation as the raw values,
however they would now be defined as “fitted”, “modelled” or “smoothed” versions. For
example, ASRs derived from ST models would have the same interpretation from a
policy standpoint, however they would be classed as “smoothed” ASRs.

3.1 Regression models

Almost any statistical model can be fitted using Bayesian inference by first specifying the
model using a series of probability distributions. Consider the standard linear model used
for continuous outcomes, where data are assumed to be independent and identically dis-
tributed (iid). In most introductory courses of regression modelling, the linear model is
written as follows,

Y =a+ Br; +¢ i=1,....,n (3.1)

ei@N(O,az). i=1,...,n

DOHWA, QUT



3 BAYESIAN SPATIO-TEMPORAL (ST) MODELLING 23

The parameters of this model are P = («, 8, o), where « is the intercept, § is the regression
coefficient and o is the residual standard deviation. The data are denoted as 'y = (y1,...,Yn)
and x = (z1,...,7,). See Section for more details of this notation.

We can easily rewrite this model using the likelihood + prior form. The likelihood for the
standard linear model is the normal distribution, N(u,0?), with a mean, p and variance,
o2. The prior distributions are chosen dependent on the parameter (e.g. a Gamma prior is
chosen for ¢ as the standard deviation must be positive).

i 2N (a+ Baiyo?) i=1n 62

a ~ N(0,1000?)
B ~ N(0,1000?)

o ~ Gamma (shape = 2, rate = 0.5)

and are identical models but written in different forms. The linear model in
(3.2) uses priors for «, 8 and o that are likely to be uninformative. A prior is uninformative
if the distribution implies that a very large range of values for the parameter are reasonable
before seeing the data. For example, the prior distribution for « implies that values up to
3000 and down to -3000 are plausible. For fixed effects such as «, 3, the uninformative
prior, N(0,1000?), is extremely common in practice. The Gamma prior used for o implies
that before seeing data, values of 0 < o < 10 are plausible. With sufficient data, model
inference from the Bayesian linear model in would be identical to that from frequentist
inference (e.g. fitted using ordinary least squares).

3.2 Hierarchical models

Spatio-temporal models are necessary extensions of hierarchical models. There are count-
less high level and detailed recounts and resources on multilevel and hierarchical models
in the Bayesian framework. We recommend McElreath (2020) and Gelman et al. (2014a).
For completeness we provide a very brief outline here.

Consider again, the Bayesian linear model specified in (3.2). Suppose we have data at
the unit-level on people from 8 areas, where y;; denotes the ith person from area j. For these
data, it may not be valid to assume the data are independent. However, it would be natural
to assume independence of the people within each area (i.e. conditional independence).
To accommodate this hierarchical structure into our linear model, we could estimate a
separate intercept for all persons from the same area. In the model below, the effect of area
is considered fixed and thus, we call them fixed effects.
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iid

yij ~ N (Bj,02) i=1,...,n5j=1,...,8 (3.3)
B8; * N(a,1000?) j=1,...,8

a ~ N(0,1000%)
. ~ Gamma (2,0.05)

For didactic purposes, a more familiarF_EI but equivalent, model to (3.3) could be written
as

Yij = o+ B + €5
€ij iiﬂi N (0,0’5) .

This Bayesian approach is generally classed as the “no-pooling” solution as the area-
specific intercepts, 3;, do not share any information (i.e. they are independent). A prag-

matic alternative is to let the 8 intercepts themselves come from a distribution (e.g. §; i

N (a,aé)).

yi; <N (8;,02) i=1,...n,j=1,...8 (3.4)

B8; “ N(a,0?) j=1,...,8
a ~ N(0,1000%)
. ~ Gamma (2,0.5)

o3 ~ Gamma (2,0.5)

You'll notice that instead of using a N(0,1000?) prior for all the ;s (as in (3:3)), in
we now learn the parameters, «, og, of this distribution from the data. Of course, because
o3 is now a parameter of our model, we must place a prior distribution on it; a hyperprior.
In this case, the effect of area is random and thus, we call them random effects (REs).

REs are extremely powerful tools in Bayesian inference. Unlike the first example in
this section, which used “no-pooling”, REs provide useful partial-pooling properties. By
construction, random effects for small areas will be smoothed toward the mean of the prior
distribution (e.g. N (a,cr%)), whereas large areas will be able to escape the pooling effect
and provide REs that may be very similar to those from the no-pooling solution.

Bayesian inference automatically determines the amount of pooling that should be ap-
plied via estimation of 53. For this example, very small values of o3 would indicate that the
REs are indistinguishable from the mean area effect, . See the box on page for more
details.

15“Familiar” as in frequentist.
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Note that (3.4) can also be written as,

Yij = o+ [ + €5 t=1,...,n;,7=1,...,8
B8; “ N(0,0%) j=1,...,8
eij X N (0,02) i=1,...n;j=1..8

o ~ N(0,1000?)
o. ~ Gamma (2,0.5)

os ~ Gamma (2,0.5)

Consider! Variance terms

When a Bayesian hierarchical model is slow to converge, it is always good to check the
estimated size of 0g. If 04 is extremely small, then it may be more parsimonious to re-
move the random effect (RE) all together. Of course, there are formal model diagnostics
one can use to help with these kinds of modelling choices.

As long as the MCMC algorithm has converged, including a RE with a very small
variance will not affect the fitted values. Thus, in this work, researchers may examine
the estimated values for the RE variances, but should not remove terms. This recom-
mendation will help ensure an efficient, clear and consistent workflow for the modelling
work. Note that these recommendations are aimed at the administrative and registry
data. Modelling choices for the survey data are unique and are discussed in Section

5.4

Consider the example introduced in Section Suppose now we wish for the area-
specific random effects (REs), 8;’s, to share more information if the areas are near to each
and less information if the areas are far from each other geographically. The independent
RE structure imposed in (3.4), borrows information globally (across the entire data) because
it treats each RE, 3;, as a random draw from the distribution, N(«, ¢3), of area-specific REs.
Thus, standard hierarchical models must be extended to accommodate the local smooth-
ing/sharing of information we desire. Furthermore, if we assume that data are spatially
correlated — which means we assume that data for areas near to each other will be more
similar than areas far from each other — standard hierarchical models cannot create the
conditional independence we require. Note that from this section onward we strictly follow
the indices and notation described in Tables [I] and [2] on page [6
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3.3 Spatial priors

Any spatial analysis starts by defining the neighbourhood structure for the disjoint areas
via a weight matrix, denoted WS. Generally W is defined via the binary specification where
W§S = 1if area i and area k are neighbours, and zero otherwise. Figure IZI shows a simple
map of six contiguous areas, with its corresponding binary weight matrix.

010010
101010
ws_ 010110
001011
111101
000 1 1 0

Figure 7: Example of a simple six area map and the corresponding binary contiguity weight matrix using a Queen-
1 adjacency (see the box on page[26). Note that area 2 (blue) has areas 1,3,5 as neighbours (red), since it does not
share a boundary with areas 4 (despite appearances) nor 6.

By specifying the neighbourhood structure in this way, we can now proceed to specify a
distribution for the random effects (REs). Spatial REs are constructed to accommodate the
spatial structure of the data, usually by smoothing over adjacent areas. For this reason,
spatial REs are also referred to as spatially structured REs.

Consider! Queen vs Rook adjacency

The binary weight matrix, W, can be defined in various ways, with the Rook or Queen
adjacency being very common approaches in disease mapping applications. Rook ad-
jacency considers an area a neighbour if at least one side borders the area, whilst
Queen adjacency considers an area a neighbour if at least one side or corner bor-
ders the area. Of course, these methods can be further split according to whether
only immediate neighbours will be defined as such (Queen-1) or whether neighbours
of neighbours will also be considered neighbours (Queen-2) (Earnest et al.[2007). For
simplicity, we recommend Queen-1 adjacency for this project.
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3.3.1 ICAR

Let s;,4 = 1,...,M, where M is the total number of areas (e.g. HDs, LGAs or SA2s). See
Table [1] for notation details. The intrinsic conditional autoregressive (ICAR) prior for a RE,
s;, is described by the following conditional normal distribution,

s;~ N (m’ Ug) (3.5)
m; m;
where m; = Zﬁi . W5 is the number of neighbours that area i has. Under the ICAR
prior, the mean of the RE, s;, for area i is the empirical mean of its neighbours’ REs. The
conditional variance of s; is the global variance, o2, divided by the number of neighbours.
See Section for an example using Figure |7} For clarity a vector of REs, s = (s1,...,Sm),
from an ICAR prior will be denoted as

s ~ ICAR (W5, 02).

’7s

3.3.2 BYM

Although the data could be highly spatially correlated, it is best practice to include both
spatially structured and unstructured spatial random effects (REs). Unstructured REs do
not accommodate the spatial structure and treat each area as independent of its neigh-
bours. Without allowing for unstructured REs, areas with very high values relative to their
neighbours may have a large impact on all the spatial REs. To address this issue Besag
et al. (1991) proposed the well known BYM specification, where both a structured ICAR
prior, s;, and an unstructured standard RE, v; ~ N(0,02) are used.

0i =si+v; (3.6)
s ~ ICAR(WS, ¢%)

S

v ~ N(O,Ug),

3.3.3 BYM2

The BYM can cause significant identifiability and convergence problems, which is mostly
related to the two variance parameters, o2, 02. Thus, more recently Riebler et al. (2016)
developed the BYM2 prior, which places a single variance parameter, ¢3, on the combined
components with the help of a mixing parameter, p € (0, 1), that represents the amount of

spatially structured as opposed to unstructured residual variation. The BYM2 prior is

DOHWA, QUT



3 BAYESIAN SPATIO-TEMPORAL (ST) MODELLING 28

0; = og (s“/p/n—l—u“/l—p) (8.7)
s ~ ICAR(WS, 1)
Vi~ N(O, 1)7

where « is a scaling factor that is estimated from the weight matrix, WS, and ensures
that oy is a legitimate standard deviation. The parameter, p, is generally estimated from the
data by placing a uniform prior on it. For clarity, a vector of REs, 6 = (61,...,0)), from a
BYM2 prior will be denoted as

6 ~ BYM2 (WS, 0, /-@,Jg) .

3.3.4 Leroux

Another common prior used to accommodate both structured and unstructured spatial
variation is that of Leroux et al. (2000). Similar to the BYM2 prior the Leroux prior uses a
single RE that can model a mixture of structured and unstructured spatial variation.

0, ~ N( P i Wits % ) (3.8)
P W +1=p pX Wi +1-p

This mixture representation comprises of uncorrelated smoothing to a global mean of
zero (weighted by 1 — p) as well as correlated smoothing of the nearby REs (weighted by p).
Note that when p = 0, the Leroux prior collapses to an independent standard normal prior,
while p = 1 gives the ICAR prior. For conciseness, a vector of REs, 6, that come from a

Leroux prior will be denoted as,

6 ~ Leroux (W%, p,07)

3.4 Temporal Priors

Spatial and temporal priors generally follow similar construction. The key difference is that
spatial priors must accommodate two-dimensions (longitude and latitude), while temporal
priors need only one-dimension. By altering the weight matrix accordingly, the spatial
priors introduced above can also be used for temporal settings. Figure|[§]illustrates a simple
five time point example with the corresponding temporal weight matrix, WT.
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Figure 8: Example of how temporal random effects share information locally. The corresponding temporal weight
matrix shows how each time point’s neighbours are a single time point before and after. Consider time point 3
(highlighted using a large blue dot). It borrows information from time points 2 and 4 (red dots) which are a single
point before and after (shaded in blue) time point 3.

3.4.1 RW1

Let v¢,t = 1,...,T be the temporal random effect (RE) for time point ¢ and T be the total
number of time points in the data (see Table[I). In this project, the time points are years.
The temporal REs can be modelled using the ICAR prior,

v ~ICAR (W7, 02). (3.9)

ol

A temporal prior of this kind is commonly referred to as a random walk of order 1 (RW1)
(Haining and Li|2020). The intuition is identical to before.

For example, the conditional mean and variance of v3 is the mean of v, and 02/2,
respectively (see Figure[8). Note that the BYM2 and Leroux spatial priors introduced above
can also be used for temporal REs by simply using the appropriate temporal weight matrix,
WT, but this is rare, and we use the RW1 throughout this report.

3.5 Space-time interaction priors

The temporal and spatial random effects (REs) cannot capture any variation specific to one
area at one-time point. For example, consider a particular area that generally has a low rate
of a given disease, but for some reason has an extremely high rate for one of the years in the
data. Without including some form of space-time interaction, this outlier could alter the
temporal and spatial REs and smooth neighbouring time points and areas in undesirable
ways. There are a variety of possible REs that can be used to allow for space-time variation
(Knorr-Held |2000). For parsimony, we recommend using a standard normal distribution for
the space-time interaction RE, which assumes independent variation.
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3.6 Spatio-temporal models

The most generic spatio-temporal model can be written in the following likelihood + prior
form. Given that a large quantity of DOHWA data are given as raw counts, we present a
generic Poisson model in below.

Let y;;, and N;;, be the raw counts and population size, respectively, for age group a
(@ =1,...,A), area i and time ¢. In addition, let X;,, € R'*(A~1) be the design matrix of
indicators for the A age groups and 8 € R(A~Ux1 their respective regression coefficients.
A design matrix is a condensed matrix formulation that represents multiple fixed effects
(e.g. covariates). The design matrix, X;;,, can also include any adjustment factors such as
SEIFA and remoteness (see the box on page [43). The fitted or smoothed counts are given
by pi:q. Please refer to Section and Tables [T| and [2] for notation help.

We use a BYM2 prior for the spatial RE, an ICAR prior for the temporal RE and a stan-
dard normal distribution for the space-time interaction RE. We place reasonably weakly
informative gamma priors on the variance terms, uninformative normal distributions on
the regression coefficients and a uniform prior on p. As highlighted in Section the
priors on the regression coefficients are extensively used.

The priors used for variance terms vary widely in the literature, for example Urdangarin
et al. (2022) use a Gamma(1,0.01) prior on the precision oy 2, which implies a highly
informative prior on o5, whilst Lawson (2020) uses a uniform prior with an arbitrary cutoff
of 10, Uniform(0, 10). Following recommendations by the stan community, found here, the
Gamma prior used below balances pushing density away from zero, whilst providing a long
tail to make the distribution relatively uninformative.

Yita ~ Poisson (ita) (3.10)
log (ttita) =108 (Nita) + @ + XitaB + 0; + 71 + dit
Sit ~ N(0,0%)
6 ~ BYM2 (Ws,p, Ky og)
v ~ICAR (W', 02)
p ~ Uniform(0, 1)
09, 0~,0s ~ Gamma(2,0.5)

o, B ~ N(0,1000?)

By including the offset term, log (N;;,), we are implicitly modeling the fitted rate for age
a, area i and time t. See Section for more details.

16The precision is the inverse of the variance, 75 = 0—12 Although some Bayesian software (Lunn et al. |2000;
)

Plummer|2003) defaults to putting priors on the precision terms, it is preferable to place priors instead on standard
deviations as these have a more convenient interpretation.
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4 Administrative data

The administrative data include mortality (overall and avoidable deaths and alcohol and
other drugs (AOD) related deaths), emergency department (ED) attendances (overall and
GP-type ED attendances), hospitalisations (overall and potentially preventable hospitali-
sations, AOD related hospitalisations, injury and poisoning related hospitalisations), no-
tifiable communicable diseases and cancer incidence. Regardless of the condition, these
administrative data are reported as raw counts and are thus modelled as such.

We recognise two key metrics that should be reported from these data (formula for the
epidemiology metrics discussed in this report can be found in Section [8.3). The first metric
is the area-by-year standardised incidence ratios (SIRs) (Section [4.1), which are calculated
by dividing the observed counts by the expected counts in each area and year. An SIR
of 1 indicates that the incidence in a particular area is similar to that of the state. The
SIRs derived from the models are equivalent to standardised rate ratios (SRRs) (for the
hospitalisation, ED and notifiable communicable disease data) and standardised mortality
ratios (SMRs) (for the mortality data).

The second metric is ASRs (Section [4.2), which involves direct standardisation of the
area, year and age (AYA) counts to the 2001 Australian Standard Population.

Modelling or smoothing administrative data across areas and years requires both popu-
lation estimates and raw counts by area and year. Poisson models are used extensively in
the field of disease mapping to model raw counts with a necessary offset term (see (3.10));
making them a great choice for the ASR and SIR-type models required in this project. The
difference between the ASR and SIR-type models is the definition of the offset term (see
Table . Two versions of ASR models are provided — the ASR_ST and ASRA_ST models
— where the ASRA ST model includes age groups within the model. Figure compares
the posterior ASRs from the ASR ST and ASRA_ST models to the raw ASRs.

We acknowledge that metrics are required by sex. Although age-period models include
sex and age in the same model (Riebler and Held 2017), unless otherwise stated, for this
project we recommend fitting separate models for males, females and persons.

Input data by

Model Area Year Age Input data Ciafsis Key mo¢.ie1 ?utput Software Code Egq.
term calculation *
SIRST v v Counts Expected Fitted counts CARBayesST |3 @1
counts = offset
ASRST v v Counts Counts = ASRs Elt:ﬁi(ﬁoums CARBayesST |4 @3)
Fitted counts |
ASRAST v v v Counts Population (then calculate nimble 5
ASR)

Table 4: Summary of models for administrative data. ¥ Grey-coloured text denotes the calculations carried out
on the fitted counts to derive the core metrics. For more details see Sections 4.2.1} Approximate run
time for these models is of the order of days to weeks (ASRA_ST) or minutes (SIR_ST, ASR_ST).

17ASRA (Age-Standardised Rate with Age) is not a epidemiology metric but a model identifier we have created to
help differentiate the three recommended administrative ST models.
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4.1 Standardised incidence ratio (SIR)

The most common metric reported in disease mapping applications is the SIR (Cramb et al.
2020). Since an SIR is the observed counts divided by the expected counts, when modelling
SIRs, the offset term is the expected counts (Lee2011). See the box on page[32] This generic
style of ST model will be denoted as the SIR ST model hereafter.

Consider! Expected counts

The expected counts for the SIR ST model are derived by applying the overall age-
specific rate (across all years and areas) to the known age-specific populations in each
area and year. This means that the SIRs describe the ratio of the current area-by-time
counts to the overall expected counts, which allows examination of temporal trends.

Alternative approaches derive overall age-rates for each year. In this case, the SIRs
describe the ratio of the current area-by-time counts to the time-specific expected
counts. Note that this approach prevents us from obtaining temporal trends.

4.1.1 Model: SIR. ST

The SIR ST model requires data by area and year as illustrated in Table [5] The model can
be fitted using the R package CARBayesST, which uses efficient MCMC to fit Bayesian ST
models in R (Lee et al. [2022). Unfortunately this package does not naturally allow the user
to run multiple chains. We have written a wrapper function that automatically runs four
chajns{l;g] behind the scenes, returning useful output, including model convergence metrics
(see Code[3).

v E Mid T.id LGA  year N
Yit Ey { 3
3 6.72 1 1 50080 2011 17807
9 8.88 2 1 50210 2011 32611
2 0.43 3 1 50250 2011 3628
0 1.86 4 1 50280 2011 6133
1 2.57 5 1 50350 2011 7558
10 11.15 6 1 50420 2011 33210
13 6.13 7 1 50490 2011 18318
0 0.37 8 1 50560 2011 782
0 0.20 9 1 50630 2011 866
0 0.34 10 1 50770 2011 818

Table 5: Example data structure for the SIR_ ST model. M_id is a sequential identifier for the areas, while T_id is a
sequential identifier for the time periods. In the table, y;; and F;; are the raw and expected counts for area ¢ and
year t (see for details).

18please review Section for details on why multiple chains are used.
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# Use the wrapper function to fit 4 chains using CARBayesST
SIR_model <- jf$SampleCBST(y ~ offset(log(E)),

# Number of MCMC samples to draw for each chain
n.sample = 2500,

# burn-in

nburnin = 1250,

# amount to thin by

thin = 1,
# define the dataset
data = df,

# binary contiguity weight matriz

W =W,

# area and year wvartables in df

area = "M_id",

year = "T_id",

# offset term as a numeric vector
ofs = df$E,

# observed count as a numeric vector
y = dfdy)

R Code 3: Example code to fit the SIR_.ST model.

The model fitted using the j£$SampleCBST() function in R (see Code [3) is specified below.
Let y;; and E;; be the raw and expected counts for area ¢ and year ¢. See Section for

calculation of E;;. The SIR ST model uses a Leroux prior for the vector of spatial random

effects (REs), 6 = (64, .

..,0r) € RM  an ICAR prior for the temporal REs, v = (v1,...

1) €

R”, and a normal distribution for the space-time interaction REs, 6 € RMT. Please review
Section for help with this notation.

yit ~ Poisson ()
log (pit) = 10g (Eit) + a + 0; + v + dit
6 ~ Leroux (W®, p,07)
v ~ICAR (W', 0?)
dit ~ N(0, a§)
p ~ Uniform(0, 1)
o ~ N(0,1000%)

0j,02,03 ~ InvGamma (shape = 1,scale = 0.01)
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The wrapper function, j£$SampleCBST(), returns the posterior draws for the smoothed
SIRs, which are calculated by performing the following computation for each posterior draw
d,

(d)
SIR\® = Hit_ (4.2)

Ei
The matrix of posterior draws for the fitted counts and SIRs can be accessed by SIR model$fitted draws
and SIR.model$rate_draws, respectively.

Consider! Population and spatial smoothing

The output of disease mapping models adapt to the population size in each area and
year (i.e. the offset term). That is they provide <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>