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Notation

Index Total Notation
Individual j nit j = 1, . . . , nit
Unique
combination f F f = 1, . . . , F

Area i M i = 1, . . . ,M
Area (alt.) k M k = 1, . . . ,M
Time t T t = 1, . . . , T
Age a A a = 1, . . . , A
Covariate q Q q = 1, . . . , Q
Posterior draws d D d = 1, . . . , D
Health state h H h = 1, . . . ,H

Table 1: Dictionary of indices used in this report.

Notation Subscript Superscript
Observed data y any st
Fitted values µ any (d), nz
Expected counts E it (d)
Intercept α (d), nz
Design matrix of fixed effects X any
Design matrix of random effects (see 8.1) G any
Coefficients for fixed effects β q (d)
Coefficients for fixed effects (see 8.8) βqr q (d)
Coefficients for random effects (see 8.1) λ (d)
Standard normal random variables Z any any of γ, δ, s, v
Spatial random effects (ICAR) s i
Unstructured random effects v i
Combined spatial random effects θ i
Unstructured and structured mixing parameter ρ
Scaling (BYM2) κ
Temporal random effects (ICAR) γ t
Space-time random effects δ it
Spatial weight matrix WS ik
Temporal weight matrix WT ik
Variance σ2 any of γ, δ, s, v, ϕ
Survey weights w jit
Population N any
Sample size n any
Disability weight e h
Life expectancy L a
Probability p any (d)
Direct estimate (from survey) p̂ it u
Sampling variance (of p̂) ψ̂ it u

Table 2: Definitions of the notation used for specifying the Bayesian models in this report.



1 INTRODUCTION 7

1 Introduction

The Department of Health Western Australia (DOHWA) is currently working on a modelling
and mapping project to improve health insights in Western Australia. This project aims to
leverage a large quantity of administrative and survey data along with spatio-temporal (ST)
Bayesian models to generate robust small area estimates and measures of uncertainty for a
variety of health metrics for a wide range of conditions and indicators across multiple years.
The goal is to generate smoothed estimates of these health metrics at three geographical
levels; namely health districts (HDs), local government areas (LGAs) and statistical areas
level 2 (SA2s). Finally, health metrics will be provided separately for males, females and
persons and broken down by Aboriginality where the data is available.

The project has access to three distinct types of data, which require different models.1

The first and largest is administrative/registry data, which includes cancer incidence, hos-
pitalisations and mortality. These data require spatial and temporal smoothing to meet
issues relating to small counts and populations and to avoid some privacy and confiden-
tiality requirements.

The second type of data are annual Western Australian population health surveys which
will be used to provide prevalence estimates for a variety of health factors, including but not
limited to smoking, diet, alcohol and obesity. These data require more complex modelling,
as non-sampled data must be imputed whilst simultaneously correcting for sampling and
non-response bias in the survey design and collection process.

Finally, mapping metrics related to the burden of disease is required. There is a large
amount of data required to estimate the burden of disease, which include prevalence es-
timates, mortality data, comorbidity adjusted disability weights, and life expectancy esti-
mates.

As the funding agencies for the project, both DOHWA and FrontierSI have contracted
researchers from the Queensland University of Technology (QUT) to explore and assess the
amassed data and recommend suitable Bayesian models. This report provides additional
details based on the recommendations provided in Deliverable 1.

1.1 Structure

To begin with we’ll discuss the details of Bayesian inference and computation (Section 2),
which are critical to drawing valid conclusions from Bayesian models. We’ll then introduce
Bayesian hierarchical models and discuss the details and construction of spatio-temporal
models in general (Section 3). In the following sections, we’ll provide the R code and math
details for the recommended models for the three data types (Sections 4, 5, 6), along with
examples of the data structure and plots of results where necessary. Note that this report
(and the R code contained within it) are not substitutes for the training materials. As such,
the R code in this report cannot be solely used to conduct the modelling.

1See Figure 22 in Section 8 for an overview flowchart of the data and models.

DOHWA, QUT



1 INTRODUCTION 8

Scattered throughout the report we’ve included Tech Talk! and Consider! boxes that
aim to briefly highlight any technical or theoretical details that arise from our discussions.
The large appendix (Section 8) includes a brief introduction to the generic mathematical
notation (vectors, matrices, etc) used in this report (Section 8.1), the epidemiology metrics
(Section 8.3) and details of any computational tricks used. The mathematical notation used
throughout most of this report can be found in Tables 1 and 2.

The Bayesian ST models we discuss in this report have been purposely recommended for
their wide applicability across different data types and conditions. As long as the format
of the data and the outcome is of the correct type (e.g. count or binary), Bayesian ST
models learn the best way to approximate the data, given the model structure we impose.
To ensure a reasonable balance between efficiency, ease of use and appropriateness, the
models we recommend impose enough structure to achieve the goals of the project, but
also the flexibility for the models to learn what is required from the data itself. Thus, this
technical report purposely does not focus on any single condition.

DOHWA, QUT



2 BAYESIAN INFERENCE 9

2 Bayesian Inference

The benefit of Bayesian inference and modelling is its flexibility, probabilistic interpretation
and simple reporting of uncertainty.2 Bayesian inference considers model parameters, P,
as random and data, y, as fixed (see Table 3 for a breakdown of the differences between
Bayesian and frequentist inference). Unlike in frequentist inference, where the parameter
estimates are those that maximise the log likelihood, log p (y|P), in Bayesian inference the
parameter estimates are the posterior distributions, p (P|y),3 which specifies the distribution
of the parameters of the Bayesian model, given our data, y. The posterior distribution
is a combination of the likelihood, p (y|P), and the prior distribution, p(P). The posterior
distribution is derived using Bayes theorem,

p (P|y) = p (y|P) p (P)
p(y)

. (2.1)

Given that the posterior is a distribution, the model parameters have a natural proba-
bilistic interpretation. For example, Bayesian inference allows us to derive the probability
that a parameter, P, is greater than some value, Pr (P > c|y).

Frequentist Bayesian
Probability is “long-run frequency” Probability is “degree of certainty”
p (y|P) is a sampling distribution
(function of y with fixed P)

p (y|P) is a likelihood
(function of P with fixed y)

No prior prior
p-values
(null hypothesis tests)

Full probability model
available for summary/decisions

Confidence intervals Credible intervals

Table 3: Some of the core differences between Bayesian and frequentist thinking and inference.

2.1 Computation

Since Bayesian models are often numerically intractable, estimates are generally computed
through an algorithm called Markov Chain Monte Carlo (MCMC) (Gelman et al. 2014a),
which approximates the posterior distribution of our Bayesian models by drawing a very
large number of samples, say D, from p (P|y).4 Although there are a wide range of MCMC
algorithms, those proposed in this work rely on methods called random walk or Gibbs
sampling.5 These methods propose (or step) to new parameter value by comparing the
likelihood of the current value to the proposed value (see the box on page 11 for details
on how to select an appropriate step size). MCMC begins by specifying an initial set of

2Please see the rigorous introduction to Bayesian workflow by Gelman et al. (2020)
3p(.) denotes a probability distribution. For example, p(X) would denote the probability distribution for the

random variable X
4Other methods (e.g. Variational Inference) can be used to obtain the posterior distribution. These methods

can be considerably faster than MCMC methods, but at the cost of accuracy and simplicity.
5Please see Chapter 9 of McElreath (2020) for an intuitive introduction to random walk and Gibbs samplers.

DOHWA, QUT



2 BAYESIAN INFERENCE 10

parameter values, before running a “chain of steps” (technically called a Markov Chain)
with the goal that the entire collection of steps (the posterior draws) will approximate the
true posterior distribution. In this example, D is the number of steps we ask the MCMC
algorithm to take.

MCMC algorithms can provide exact inference for Bayesian models when D is very large.
However, for finite D, say 10, 000, the validity of inferences from Bayesian models depends
on whether the algorithm has converged. Technically speaking, convergence refers to the
stabilization of the Markov chain that is used to simulate the posterior distribution. Given
the importance of convergence in Bayesian analysis, convergence must be assessed prior
to drawing any model inferences. Unfortunately, in practice, it is impossible to validate
whether an MCMC algorithm has converged to the true posterior. That said, there are two
pivotal checks and corresponding metrics we recommend using to have confidence in the
validity of the MCMC output and resulting inferences.

R-hat It is recommended to run multiple, independent MCMC algorithms for the same
model, called chains. By starting each chain with a different set of initial parameter values,
we can ascertain whether convergence is acceptable by comparing the behaviour of the
posterior draws from different chains. Well behaved chains should converge to the same
area of the parameter space regardless of the initial parameter values used. Separate chains
that converge to the same density are described as “mixing well”.

Note that a single chain can also be used but must be run for a long time compared to
the shorter runs we can use for each of multiple chains. Furthermore, current MCMC diag-
nostics rely on the assessment between chains (Vehtari et al. 2021), which makes multiple-
chain approaches preferable. The posterior draws from MCMC are the combined draws
from multiple chains or the draws from a single chain.

The R̂, which is always greater or equal to 1, is used for these assessments 6. An R̂ = 1

denotes convergence and is desirable for all parameters of a model. Vehtari et al. (2021)
suggest a softer and more reasonable cutoff for acceptable convergence; R̂ < 1.01. We use
the recommendation by Vehtari et al. (2021).

Effective sample size (ESS) Given the stepping method described above, the posterior
draws are not independent — even though we would like them to be. A good measure of
the efficiency of an MCMC algorithm is the effective sample size (ESS). The ESS considers
the dependence in the posteriors and estimates the number of independent posterior draws
that our D draws represent. Like the R̂, the ESS is a good measure of convergence and is
a standard output from Bayesian software 7.

A good check of the correlation in the posterior draws is the autocorrelation plot. An
example can be found in Figure 2. In general, if a parameter has been effectively sampled,
we should see an autocorrelation plot similar to the left or middle columns (sigma2 theta

6Readers interested in the formula behind R̂ should refer to Vehtari et al. (2021).
7Readers interested in the formula behind ESS should refer to Vehtari et al. (2021).

DOHWA, QUT



2 BAYESIAN INFERENCE 11

and sigma2 gamma) in Figure 2, which suggests that even after a single iteration the posterior
draws are close to independent (zero correlation). Observe that the posterior draws on the
right are still reasonably strongly correlated even after 5 iterations. This suggests that
sigma2 delta is particularly difficult to sample and may have low ESS. See Section 2.1 for
some recommendations on how to improve convergence and ESS.

A highly correlated or inefficient MCMC algorithm would give very low values of ESS. In
most cases, ESS can be artificially increased by taking more posterior draws (e.g. setting D
higher). However, these decisions must be balanced with the computation cost. An efficient
MCMC algorithm should achieve an ESS as close to D as possible - indicating completely
independent draws. Note that the accuracy of any inference drawn from MCMC depends
on the ESS. A crude rule of thumb used by rstan (Stan Development Team 2022) is that all
model parameters should have ESS larger than the number of chains multiplied by 100. For
example, if one is to run 4 independent chains, the recommended cutoff is for all parameters
to have an ESS larger than 400.

Tech talk! Step size and adaption

For these stepping methods, the size of the step is very important and can have a
drastic effect on the efficiency and validity of the MCMC algorithm. Fortunately, in
practice, we do not need to manually select the step size. The software recommended
in this project uses an automatic adaption scheme that selects the most efficient step
size for the model and data, before producing usable posterior draws. This adaptive
period of the MCMC algorithm is called the burn-in. Posterior draws produced during
burn-in should not be used for inference and are generally discarded.

Assessing convergence In Figure 1 we display trace plots of the posterior draws of a
single parameter: the mean of some continuous data. Trace plots show the evolution of the
posterior draws during the algorithm and are very helpful tools to ascertain the convergence
of our MCMC algorithms. In plot (a) and (b) of Figure 1, we use a poorly optimised step size
while plots (c) and (d) use a well-chosen step size.

In plot (a) the posterior draws move extremely slowly toward the true value, indicating
very slow and poor mixing. We see extremely low ESS and a very large R̂, both indicating
that the chains have not mixed; we should not trust the posterior draws. The core problem
in plot (a) is that the posterior draws are highly correlated given the poorly chosen step size.
One can still obtain convergence with this step size, but must dramatically increase the
number of posterior draws, D.

In plot (b) of Figure 1, we increase D tenfold and also thin the chains by 100. Thinning,
in this case, involves discarding every 1-99th draw and keeping only each hundredth in the
hope that after 100 draws, samples will be much less correlated.8 Although the trace plot

8Thinning by 100 is generally not advisable as this can indicate a problem with the model. In practice, thinning
between 10-20 is usual.

DOHWA, QUT



2 BAYESIAN INFERENCE 12

and convergence diagnostics (R̂ and ESS) in plot (b) suggest convergence, computation took
100 times longer than that for plot (a). Similar to plot (b), plot (d) in Figure 1 shows very
good convergence. The well optimised MCMC algorithm has provided almost independent
posterior draws for a fraction of the computational cost required to obtain the draws in
plot (b). Plot (c) in Figure 1 is another example of poor convergence. However, unlike in
plot (a) where our reason for claiming non-convergence was due to poor mixing, the draws
presented in plot (c) should not be trusted because each chain has converged to a different
area of the parameter space. The convergence diagnostics highlight the issue as the ESS is
very low and R̂ is very high.

The illustrations in this section are pivotal to understanding the importance of Bayesian
computation in applications of Bayesian modelling. We observed that a well optimised
MCMC algorithm can provide substantially faster and more accurate inference.9 Note that
in the past decade there have been significant improvements in MCMC algorithms, with the
current state-of-the-art being implemented in Stan (Stan Development Team 2022).

Figure 2: Example of an autocorrelation plot for three parameters (columns) across 4 chains (rows). Autocorrela-
tion plots describe the correlation between draws in the chains. The x-axis describes the lag number of iterations
(after thinning), while the y-axis gives the correlation. For example, the bar at lag 5 gives the average correlation
of the posterior draws that are 5 samples apart.

9The term ’better’ here refers to the quality of the posterior draws in terms of efficiency and accuracy.
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(a) (b)

(c) (d)

Figure 1: Trace plot of a single parameter (mean of continuous data) estimated using a simple random walk MCMC
algorithm (D = 2, 000 draws for each of 4 chains). Each plot has the number of iterations, D, thinning value,
effective sample size (ESS) and R̂. The initial values for the algorithm are 2,3,5,6 and the dotted line represents
the true parameter value from the simulated data. Plot (a) illustrates non convergence because of poor mixing.
Plot (b) illustrates convergence, but uses D = 200, 000 posterior draws with 100 thinning rather than D = 2000 like
the other three plots. Plot (c) illustrates non convergence because the chains have converged to different parameter
values. Plot (d) illustrates good convergence of the MCMC algorithm.
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Improving convergence As we’ve shown, convergence is essential to drawing valid infer-
ence from Bayesian models fitted via MCMC. Advanced users may wish to apply a range
of computational tricks, but in most situations convergence can be improved through the
following:

q Increase D (i.e. run the algorithm for longer)

q Increase the number of iterations for burn-in

q Increase the level of thinning10 (see Section 2.1)

q Use more informative initial values (e.g. taken from frequentist models)

q To ascertain which component/s of the model is causing convergence problems, we
recommend reducing the complexity of the model (e.g. dropping random effects or
fixed effects) until convergence is achieved.

q Increase the frequency of adaption (see the box on page 11)

q See the box on page 41 for more specific help

Please see Section 8.9 for example Bayesian software output with annotations.

2.2 Inference

Unlike frequentist model estimation, where model output is generally comprised of point
estimates, standard errors and p-values, the output of Bayesian models estimated using
MCMC are the D posterior draws. With access to the posterior draws, a Bayesian11 can cal-
culate summary metrics (e.g. means, medians and quantiles), or apply any transformation
to derive posterior distributions for other variables of interest. Below we describe the two
core outputs required for this project: point estimates and measures of uncertainty.

2.2.1 Point estimate

In Bayesian inference a point estimate, θ̂, for a single parameter, say θ, can be calculated
using the empirical mean (or median) of the corresponding posterior draws for that param-
eter,

θ̂ =
1

D

∑
d

θ(d)

where θ(d) is the dth posterior draw of θ from our Bayesian model. Details of this notation
can be found in Section 8.1.

10Note that increasing the thinning amount without also increasing D, will result in fewer usable draws.
11Crudely, a “Bayesian” indicates any scientist who takes a Bayesian perspective when conducting statistical

analysis.
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2.2.2 Uncertainty

There are three common methods for reporting the uncertainty of Bayesian model param-
eters: posterior standard deviations, credible intervals and exceedance probabilities. The
uncertainty measures we recommend are derived from the posterior draws directly. Thus,
given that one can derive posterior draws for any quantity of interest (age-standardised
rates, years of life lost, prevalence, etc), one can also calculate uncertainty measures for all
metrics in the same manner.

First is the standard deviation of the posterior draws, which is referred to as the posterior
standard deviation. For relatively symmetric posterior distributions, the posterior standard
deviation may be similar to a frequentist standard error. Note that for posterior distribu-
tions that are not approximately symmetric, the posterior standard deviation can be a poor
measure of uncertainty.

The second uncertainty method is the credible interval. Bayesian credible intervals give
an interval which has a 95% chance that the true parameter value lies within it. Credible
intervals can be derived for all model parameters by calculating the empirical quantiles of
the posterior draws. For some parameters, the posterior distribution may be highly skewed
which means the quantile method of deriving credible intervals can be ineffective (see Figure
3) at capturing the most appropriate interval, in terms of values with the highest plausi-
bility. An alternative interval is the highest density interval (HDI). Unlike quantile credible
intervals, which are symmetric around the median, HDIs cover the parameter values cor-
responding to the highest density of the posterior. For approximately normally distributed
posteriors, HDIs and quantile credible intervals will be very similar. Thus, we recommend
using HDIs where possible. Our user-made function jf$getResultsData() returns HDIs as
default. See Section 2.3 from Gelman et al. (2014a) for a more thorough comparison of
quantile credible intervals and HDIs.

The third measure of uncertainty is exceedance probabilities: the probability of the pos-
terior being above a certain value. These can be derived from the posterior draws using

1

D

∑
d

I
(
θ(d) > c

)
,

where I
(
θ(d) > c

)
= 1 if θ(d) is larger than some specified value c.12 For this project, for

example, exceedance probabilities can indicate whether the age-standardised rate (ASR) in a
particular area is significantly higher than the state ASR. Commonly values above 0.80 (i.e.
80% of the posterior) are considered likely to be above, while if the exceedance probability
is below 0.2 (so 80% of the posterior is below the value) it is considered likely to be below.

A variant of exceedance probabilities were used to great effect in the Australian Cancer
Atlas (Duncan et al. 2019). They used the difference in posterior probabilities (DPP),

12I(.) is called the indicator function.
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Figure 3: Comparison of highest density interval and quantile credible interval for a skewed distribution. The
middle blue vertical line is the median, while the red lines on either side denote the bounds of the intervals.

2

∣∣∣∣∣
(

1

D

∑
d

I
(
θ(d) > c

))
− 0.5

∣∣∣∣∣ .
By using the jf$getDPP(.) function (see Code 1), one can easily derive the exceedance

probabilities and DPPs. The function also returns a binary vector denoting which columns
of draws are significantly different to the null value at the 60% level.

1 # `draws` is a matrix with D rows and n_obs columns

2 dpp_obj <- jf$getDPP(draws, null_value = 1, sig_level = 0.60)

3

4 # Exceedence probability

5 dpp_obj$EP

6

7 # DPP

8 dpp_obj$DPP

9

10 # binary vector of significance

11 # of the DPPs

12 dpp_obj$DPP_sig

R Code 1: Calculating DPP using our user-made function

Please see Section 8.9 for example Bayesian software output with annotations.
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2.3 Goodness-of-fit

Once we deem that our Bayesian model has converged, we recommend some simple model
checks to ensure the results are plausible. These include comparing the observed and
fitted values, examining model residuals and performing posterior predictive checks and
sensitivity analysis.

Observed vs fitted Bayesian inference via MCMC is a difficult task - particularly identify-
ing when a coding error has occurred. It is always recommended to plot the observed data
(e.g. counts or rates) versus the modelled estimates. Note that we do not expect (or wish)
for exact concordance between the observed and modelled estimates — remember the point
of this modelling project is to smooth the data and thus, provide more reliable estimates.

Observed versus fitted plots are a great way to identify any model specification or coding
errors. In our explorations, we always include a diagonal line of equality in all our observed
versus fitted plots, and expect the points to sit either on the line or close to it. Figures 11
and 12 provide some examples.

Plausibility checks Although comparing the observed and fitted data is a useful check,
for some of the models (Section 5) discussed in this report, we recommend further plau-
sibility checks which are not a purely Bayesian check, but recommended for all statistical
analysis. Plausibility checks are an excellent way to ensure that the specified model is work-
ing as expected and that your code is correct even though no errors were produced by the
software 13. These checks might include, for example, comparing ASRs or prevalence esti-
mates against remoteness or socioeconomic status or by comparing the posterior standard
deviations of estimates to the corresponding area-by-time population or sample sizes.

Residual plots We recommend examining the relationship between the posterior of the
standardised residuals and the fitted values, µi, to ensure there are no systematic patterns
in the residuals. Standardised residuals for Poisson models can be derived for the dth
posterior draw using the following formula.

r
(d)
i =

yi − µ
(d)
i√

µ
(d)
i

(2.2)

To simplify these checks, we suggest taking the median of both the residual and fitted
count draws. Generally, these residual plots should have little pattern across the fitted
counts. Note that for severely sparse count data, residual checks are difficult to interpret,
and one should rely more on posterior predictive checks. See Figure 4 for examples of
residual plots for common and sparse count data.

13Note that incorrectly specified priors in nimble may not throw any errors, thus giving the false pretence of a
correct model.
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(a) (b)

Figure 4: Some examples of residual plots for common (a) and sparse (b) count data, where the points on the
plot are posterior medians. Plot (a) is relatively easy to interpret and has no horizontal patterns of concern. On
the other hand, plot (b) is unintuitive and unhelpful. That said, the posterior predictive checks for the sparse
condition, shown in (b), suggest a very good fit for the model.

Sensitivity analysis To ensure our models are robust, prior choices should be investigated
using sensitivity analysis. This is particularly important for priors on model hyperparam-
eters, i.e. hyperpriors (see Section 3.2 for an example of hyperpriors). The idea is to fit
the same model with different hyperpriors14 and compare the resulting posterior distribu-
tion (Gelman et al. 2020). If the data is sufficiently large and the model is well specified,
the choices of priors and hyperpriors will often have little effect on model inference. How-
ever for some of these complex ST models, hyper/prior choices and sensitivity analyses are
important to ensure that model inference is not strongly dependent on our choice of priors.

Posterior predictive checks Posterior predictive checking (PPC) involves simulating new
data, conditional on the posterior distribution (Gelman et al. 2020). We can then derive a
metric or series of metrics for each set of simulated data and compare these metrics to the
actual data.

For Poisson models, we may be interested in ensuring that our Bayesian ST models
approximate the correct total number of counts. This process can be achieved by using
Code 2, or the following process,

ỹ
(d)
i ∼ Poisson

(
µ
(d)
i

)
Metric(d) =

∑
i

ỹ
(d)
i ,

14For example, one could change the hyperprior distribution on a variance parameter from a Gamma(2, 0.5) to
a Gamma(2, 0.01).
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where the distribution of Metric (across all D) can be compared to the sum of the raw
counts,

∑
i y

(d)
i . Figure 5 illustrates one graphical approach to posterior predictive checking

using the R package bayesplot. Observe how the black vertical lines all sit at the mean of
their corresponding histograms; this indicates that the model is fitting the data very well
(even in this sparse case). Figure 5 can be created using jf$PoissonPPC(df$y, yrep) where
yrep can be derived using Code 2. Note that while bayesplot uses T (.) to denote Metric,
we avoid this notation as T is used to denote the total number of time points later in this
report.

1 # mu_draws is a matrix with D rows and n_obs columns

2 for(i in 1:D){

3 # yrep: posterior predictive distribution

4 # yrep is a matrix with D rows and n_obs columns

5 yrep[i,] <- rpois(n_obs, mu_draws[i,])

6 }

7

8 # Alternative method to get posterior

9 # predictive distribution

10 yrep <- jf$getPoisson_rep(mu_draws)

11

12 # Simple posterior predictive check for the sum of the counts

13 # return the sum of the counts

14 sum_y <- function(x) sum(x, na.rm = T)

15 # apply the above function to each row of yrep

16 # and then summarize the D values

17 summary(apply(yrep, 1, sum_y))

R Code 2: Simulating the posterior predictive distribution for a Bayesian Poisson model and conducting a simple
PPC.
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Figure 5: Illustration of how posterior predictive distributions can be used to check the fit of a Bayesian Poisson
model. We choose the mean, variance, sum and proportion of zeros as the four metrics to evaluate the model
fit. The four plots each display a histogram, T (yrep), of the metrics, T (.), evaluated on the D posterior predictive
draws, yrep. Overlaid on the histograms are solid black lines which are the metrics evaluated on the observed
data, T (y).

2.4 Bayesian workflow

Now that we have described a variety of important components of Bayesian analysis, we
recommend loosly following a generic order of operations for Bayesian analysis depicted in
Figure 6.

1. In the first step, one prepares and formats the data. This step can be conducted in
external software (e.g. SAS).

2. The second step involves the use of MCMC to fit the specified model (Section 2.1).

3. The third and arguably most important step is the goodness-of-fit checks (Section 2.3),
where one ensures that both the model and computation are working as expected. Note
that we have included a cycle between model fitting and goodness-of-fit checks as often
one must repeat these steps several times to arrive at the final model.

4. Once the goodness-of-fit checks are complete, one can complete any post-processing
of the posterior draws from the final model, which generally includes deriving point
estimates and measures of uncertainty for the parameters or epidemiology metrics of
interest (Section 2.2).

Note that the schematic in Figure 6 is an outline, designed to help guide practice.
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Figure 6: This schematic provides an order of operations for Bayesian analysis.
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3 Bayesian spatio-temporal (ST) modelling

Bayesian spatio-temporal models are complex extensions of Bayesian hierarchical/multilevel
models. These methods can reduce the variance and instability of estimates by borrowing
information across both areas and time via intuitive local and global smoothing.

Most Bayesian ST models have five distinct elements. More details can be found in the
following sections.

q Intercept: estimates the overall mean across all years and areas in the data,

q Spatial random effect (RE): allows the estimate for each area to deviate from the inter-
cept,

q Temporal RE: allows the estimate for each year to deviate from the intercept,

q Space-time interaction RE: accommodates any area-specific temporal trends not cap-
tured by either the spatial or temporal RE,

q Fixed effects: adjusts the estimates according to important covariates such as age
group, remoteness and socioeconomic status.

Although there is a large quantity of literature describing different specifications for
the spatial, temporal and space-time REs (Haining and Li 2020; Lawson 2020; Ugarte et
al. 2014), for this project we suggest using the common specifications that have useful
theoretical properties, convenient interpretations, computational efficiency and significant
successful applications in the field (Urdangarin et al. 2022).

Consider! Interpretation of Bayesian estimates

The estimates from Bayesian ST models have the same interpretation as the raw values,
however they would now be defined as “fitted”, “modelled” or “smoothed” versions. For
example, ASRs derived from ST models would have the same interpretation from a
policy standpoint, however they would be classed as “smoothed” ASRs.

3.1 Regression models

Almost any statistical model can be fitted using Bayesian inference by first specifying the
model using a series of probability distributions. Consider the standard linear model used
for continuous outcomes, where data are assumed to be independent and identically dis-
tributed (iid). In most introductory courses of regression modelling, the linear model is
written as follows,

yi = α+ βxi + ϵi i = 1, . . . , n (3.1)

ϵi
iid∼ N(0, σ2). i = 1, . . . , n
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The parameters of this model are P = (α, β, σ), where α is the intercept, β is the regression
coefficient and σ is the residual standard deviation. The data are denoted as y = (y1, . . . , yn)

and x = (x1, . . . , xn). See Section 8.1 for more details of this notation.
We can easily rewrite this model using the likelihood + prior form. The likelihood for the

standard linear model is the normal distribution, N(µ, σ2), with a mean, µ and variance,
σ2. The prior distributions are chosen dependent on the parameter (e.g. a Gamma prior is
chosen for σ as the standard deviation must be positive).

yi
iid∼ N

(
α+ βxi, σ

2
)

i = 1, . . . , n (3.2)

α ∼ N(0, 10002)

β ∼ N(0, 10002)

σ ∼ Gamma (shape = 2, rate = 0.5)

(3.1) and (3.2) are identical models but written in different forms. The linear model in
(3.2) uses priors for α, β and σ that are likely to be uninformative. A prior is uninformative
if the distribution implies that a very large range of values for the parameter are reasonable
before seeing the data. For example, the prior distribution for α implies that values up to
3000 and down to -3000 are plausible. For fixed effects such as α, β, the uninformative
prior, N(0, 10002), is extremely common in practice. The Gamma prior used for σ implies
that before seeing data, values of 0 < σ < 10 are plausible. With sufficient data, model
inference from the Bayesian linear model in (3.2) would be identical to that from frequentist
inference (e.g. fitted using ordinary least squares).

3.2 Hierarchical models

Spatio-temporal models are necessary extensions of hierarchical models. There are count-
less high level and detailed recounts and resources on multilevel and hierarchical models
in the Bayesian framework. We recommend McElreath (2020) and Gelman et al. (2014a).
For completeness we provide a very brief outline here.

Consider again, the Bayesian linear model specified in (3.2). Suppose we have data at
the unit-level on people from 8 areas, where yij denotes the ith person from area j. For these
data, it may not be valid to assume the data are independent. However, it would be natural
to assume independence of the people within each area (i.e. conditional independence).
To accommodate this hierarchical structure into our linear model, we could estimate a
separate intercept for all persons from the same area. In the model below, the effect of area
is considered fixed and thus, we call them fixed effects.
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yij
iid∼ N

(
βj , σ

2
e

)
i = 1, . . . , nj ; j = 1, . . . , 8 (3.3)

βj
iid∼ N(α, 10002) j = 1, . . . , 8

α ∼ N(0, 10002)

σe ∼ Gamma (2, 0.05)

For didactic purposes, a more familiar,15 but equivalent, model to (3.3) could be written
as

yij = α+ βj + ϵij

ϵij
iid∼ N

(
0, σ2

e

)
.

This Bayesian approach is generally classed as the “no-pooling” solution as the area-
specific intercepts, βj, do not share any information (i.e. they are independent). A prag-
matic alternative is to let the 8 intercepts themselves come from a distribution (e.g. βj

iid∼
N
(
α, σ2

β

)
).

yij
iid∼ N

(
βj , σ

2
e

)
i = 1, . . . , nj , j = 1, . . . , 8 (3.4)

βj
iid∼ N(α, σ2

β) j = 1, . . . , 8

α ∼ N(0, 10002)

σe ∼ Gamma (2, 0.5)

σβ ∼ Gamma (2, 0.5)

You’ll notice that instead of using a N(0, 10002) prior for all the βj ’s (as in (3.3)), in (3.4)
we now learn the parameters, α, σβ, of this distribution from the data. Of course, because
σβ is now a parameter of our model, we must place a prior distribution on it; a hyperprior.
In this case, the effect of area is random and thus, we call them random effects (REs).

REs are extremely powerful tools in Bayesian inference. Unlike the first example in
this section, which used “no-pooling”, REs provide useful partial-pooling properties. By
construction, random effects for small areas will be smoothed toward the mean of the prior
distribution (e.g. N

(
α, σ2

β

)
), whereas large areas will be able to escape the pooling effect

and provide REs that may be very similar to those from the no-pooling solution.
Bayesian inference automatically determines the amount of pooling that should be ap-

plied via estimation of σβ. For this example, very small values of σβ would indicate that the
REs are indistinguishable from the mean area effect, α. See the box on page 25 for more
details.

15“Familiar” as in frequentist.
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Note that (3.4) can also be written as,

yij = α+ βj + ϵij i = 1, . . . , nj , j = 1, . . . , 8

βj
iid∼ N(0, σ2

β) j = 1, . . . , 8

ϵij
iid∼ N

(
0, σ2

e

)
i = 1, . . . , nj , j = 1, . . . , 8

α ∼ N(0, 10002)

σe ∼ Gamma (2, 0.5)

σβ ∼ Gamma (2, 0.5)

Consider! Variance terms

When a Bayesian hierarchical model is slow to converge, it is always good to check the
estimated size of σβ. If σβ is extremely small, then it may be more parsimonious to re-
move the random effect (RE) all together. Of course, there are formal model diagnostics
one can use to help with these kinds of modelling choices.

As long as the MCMC algorithm has converged, including a RE with a very small
variance will not affect the fitted values. Thus, in this work, researchers may examine
the estimated values for the RE variances, but should not remove terms. This recom-
mendation will help ensure an efficient, clear and consistent workflow for the modelling
work. Note that these recommendations are aimed at the administrative and registry
data. Modelling choices for the survey data are unique and are discussed in Section
5.4.

Consider the example introduced in Section 3.2. Suppose now we wish for the area-
specific random effects (REs), βj ’s, to share more information if the areas are near to each
and less information if the areas are far from each other geographically. The independent
RE structure imposed in (3.4), borrows information globally (across the entire data) because
it treats each RE, βj, as a random draw from the distribution, N(α, σ2

β), of area-specific REs.
Thus, standard hierarchical models must be extended to accommodate the local smooth-
ing/sharing of information we desire. Furthermore, if we assume that data are spatially
correlated — which means we assume that data for areas near to each other will be more
similar than areas far from each other — standard hierarchical models cannot create the
conditional independence we require. Note that from this section onward we strictly follow
the indices and notation described in Tables 1 and 2 on page 6.

DOHWA, QUT



3 BAYESIAN SPATIO-TEMPORAL (ST) MODELLING 26

3.3 Spatial priors

Any spatial analysis starts by defining the neighbourhood structure for the disjoint areas
via a weight matrix, denoted WS. Generally WS is defined via the binary specification where
W S
ik = 1 if area i and area k are neighbours, and zero otherwise. Figure 7 shows a simple

map of six contiguous areas, with its corresponding binary weight matrix.

WS =



0 1 0 0 1 0

1 0 1 0 1 0

0 1 0 1 1 0

0 0 1 0 1 1

1 1 1 1 0 1

0 0 0 1 1 0



Figure 7: Example of a simple six area map and the corresponding binary contiguity weight matrix using a Queen-
1 adjacency (see the box on page 26). Note that area 2 (blue) has areas 1,3,5 as neighbours (red), since it does not
share a boundary with areas 4 (despite appearances) nor 6.

By specifying the neighbourhood structure in this way, we can now proceed to specify a
distribution for the random effects (REs). Spatial REs are constructed to accommodate the
spatial structure of the data, usually by smoothing over adjacent areas. For this reason,
spatial REs are also referred to as spatially structured REs.

Consider! Queen vs Rook adjacency

The binary weight matrix, WS, can be defined in various ways, with the Rook or Queen
adjacency being very common approaches in disease mapping applications. Rook ad-
jacency considers an area a neighbour if at least one side borders the area, whilst
Queen adjacency considers an area a neighbour if at least one side or corner bor-
ders the area. Of course, these methods can be further split according to whether
only immediate neighbours will be defined as such (Queen-1) or whether neighbours
of neighbours will also be considered neighbours (Queen-2) (Earnest et al. 2007). For
simplicity, we recommend Queen-1 adjacency for this project.
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3.3.1 ICAR

Let si, i = 1, . . . ,M , where M is the total number of areas (e.g. HDs, LGAs or SA2s). See
Table 1 for notation details. The intrinsic conditional autoregressive (ICAR) prior for a RE,
si, is described by the following conditional normal distribution,

si ∼ N

(∑M
k=1W

S
iksk

mi
,
σ2
s

mi

)
(3.5)

where mi =
∑M
k=1W

S
ik is the number of neighbours that area i has. Under the ICAR

prior, the mean of the RE, si, for area i is the empirical mean of its neighbours’ REs. The
conditional variance of si is the global variance, σ2

s , divided by the number of neighbours.
See Section 8.2 for an example using Figure 7. For clarity a vector of REs, s = (s1, . . . , sM ),
from an ICAR prior will be denoted as

s ∼ ICAR
(
WS, σ2

s

)
.

3.3.2 BYM

Although the data could be highly spatially correlated, it is best practice to include both
spatially structured and unstructured spatial random effects (REs). Unstructured REs do
not accommodate the spatial structure and treat each area as independent of its neigh-
bours. Without allowing for unstructured REs, areas with very high values relative to their
neighbours may have a large impact on all the spatial REs. To address this issue Besag
et al. (1991) proposed the well known BYM specification, where both a structured ICAR
prior, si, and an unstructured standard RE, vi ∼ N(0, σ2

v) are used.

θi = si + vi (3.6)

s ∼ ICAR(WS, σ2
s)

vi ∼ N(0, σ2
v),

3.3.3 BYM2

The BYM can cause significant identifiability and convergence problems, which is mostly
related to the two variance parameters, σ2

s , σ
2
v. Thus, more recently Riebler et al. (2016)

developed the BYM2 prior, which places a single variance parameter, σ2
θ , on the combined

components with the help of a mixing parameter, ρ ∈ (0, 1), that represents the amount of
spatially structured as opposed to unstructured residual variation. The BYM2 prior is
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θi = σθ

(
si
√
ρ/κ+ vi

√
1− ρ

)
(3.7)

s ∼ ICAR(WS, 1)

vi ∼ N(0, 1),

where κ is a scaling factor that is estimated from the weight matrix, WS, and ensures
that σθ is a legitimate standard deviation. The parameter, ρ, is generally estimated from the
data by placing a uniform prior on it. For clarity, a vector of REs, θ = (θ1, . . . , θM ), from a
BYM2 prior will be denoted as

θ ∼ BYM2
(
WS, ρ, κ, σ2

θ

)
.

3.3.4 Leroux

Another common prior used to accommodate both structured and unstructured spatial
variation is that of Leroux et al. (2000). Similar to the BYM2 prior the Leroux prior uses a
single RE that can model a mixture of structured and unstructured spatial variation.

θi ∼ N

(
ρ
∑
kW

S
ikθk

ρ
∑
kW

S
ik + 1− ρ

,
σ2
θ

ρ
∑
kW

S
ik + 1− ρ

)
(3.8)

This mixture representation comprises of uncorrelated smoothing to a global mean of
zero (weighted by 1 − ρ) as well as correlated smoothing of the nearby REs (weighted by ρ).
Note that when ρ = 0, the Leroux prior collapses to an independent standard normal prior,
while ρ = 1 gives the ICAR prior. For conciseness, a vector of REs, θ, that come from a
Leroux prior will be denoted as,

θ ∼ Leroux
(
WS, ρ, σ2

θ

)
3.4 Temporal Priors

Spatial and temporal priors generally follow similar construction. The key difference is that
spatial priors must accommodate two-dimensions (longitude and latitude), while temporal
priors need only one-dimension. By altering the weight matrix accordingly, the spatial
priors introduced above can also be used for temporal settings. Figure 8 illustrates a simple
five time point example with the corresponding temporal weight matrix, WT.
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WT =


0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0



Figure 8: Example of how temporal random effects share information locally. The corresponding temporal weight
matrix shows how each time point’s neighbours are a single time point before and after. Consider time point 3
(highlighted using a large blue dot). It borrows information from time points 2 and 4 (red dots) which are a single
point before and after (shaded in blue) time point 3.

3.4.1 RW1

Let γt, t = 1, . . . , T be the temporal random effect (RE) for time point t and T be the total
number of time points in the data (see Table 1). In this project, the time points are years.
The temporal REs can be modelled using the ICAR prior,

γ ∼ ICAR
(
WT, σ2

γ

)
. (3.9)

A temporal prior of this kind is commonly referred to as a random walk of order 1 (RW1)
(Haining and Li 2020). The intuition is identical to before.

For example, the conditional mean and variance of γ3 is the mean of γ2, γ4 and σ2
γ/2,

respectively (see Figure 8). Note that the BYM2 and Leroux spatial priors introduced above
can also be used for temporal REs by simply using the appropriate temporal weight matrix,
WT, but this is rare, and we use the RW1 throughout this report.

3.5 Space-time interaction priors

The temporal and spatial random effects (REs) cannot capture any variation specific to one
area at one-time point. For example, consider a particular area that generally has a low rate
of a given disease, but for some reason has an extremely high rate for one of the years in the
data. Without including some form of space-time interaction, this outlier could alter the
temporal and spatial REs and smooth neighbouring time points and areas in undesirable
ways. There are a variety of possible REs that can be used to allow for space-time variation
(Knorr-Held 2000). For parsimony, we recommend using a standard normal distribution for
the space-time interaction RE, which assumes independent variation.
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3.6 Spatio-temporal models

The most generic spatio-temporal model can be written in the following likelihood + prior
form. Given that a large quantity of DOHWA data are given as raw counts, we present a
generic Poisson model in (3.10) below.

Let yita and Nita be the raw counts and population size, respectively, for age group a

(a = 1, . . . , A), area i and time t. In addition, let Xita ∈ R1×(A−1) be the design matrix of
indicators for the A age groups and β ∈ R(A−1)×1 their respective regression coefficients.
A design matrix is a condensed matrix formulation that represents multiple fixed effects
(e.g. covariates). The design matrix, Xita, can also include any adjustment factors such as
SEIFA and remoteness (see the box on page 43). The fitted or smoothed counts are given
by µita. Please refer to Section 8.1 and Tables 1 and 2 for notation help.

We use a BYM2 prior for the spatial RE, an ICAR prior for the temporal RE and a stan-
dard normal distribution for the space-time interaction RE. We place reasonably weakly
informative gamma priors on the variance terms, uninformative normal distributions on
the regression coefficients and a uniform prior on ρ. As highlighted in Section 3.1 the
priors on the regression coefficients are extensively used.

The priors used for variance terms vary widely in the literature, for example Urdangarin
et al. (2022) use a Gamma(1, 0.01) prior on the precision,16 σ−2

δ , which implies a highly
informative prior on σδ, whilst Lawson (2020) uses a uniform prior with an arbitrary cutoff
of 10, Uniform(0, 10). Following recommendations by the stan community, found here, the
Gamma prior used below balances pushing density away from zero, whilst providing a long
tail to make the distribution relatively uninformative.

yita ∼ Poisson (µita) (3.10)

log (µita) = log (Nita) + α+Xitaβ + θi + γt + δit

δit ∼ N(0, σ2
δ )

θ ∼ BYM2
(
WS, ρ, κ, σ2

θ

)
γ ∼ ICAR

(
WT, σ2

γ

)
ρ ∼ Uniform(0, 1)

σθ, σγ , σδ ∼ Gamma(2, 0.5)

α,β ∼ N(0, 10002)

By including the offset term, log (Nita), we are implicitly modeling the fitted rate for age
a, area i and time t. See Section 8.4 for more details.

16The precision is the inverse of the variance, τδ = 1
σ2
δ

. Although some Bayesian software (Lunn et al. 2000;
Plummer 2003) defaults to putting priors on the precision terms, it is preferable to place priors instead on standard
deviations as these have a more convenient interpretation.

DOHWA, QUT

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations


4 ADMINISTRATIVE DATA 31

4 Administrative data

The administrative data include mortality (overall and avoidable deaths and alcohol and
other drugs (AOD) related deaths), emergency department (ED) attendances (overall and
GP-type ED attendances), hospitalisations (overall and potentially preventable hospitali-
sations, AOD related hospitalisations, injury and poisoning related hospitalisations), no-
tifiable communicable diseases and cancer incidence. Regardless of the condition, these
administrative data are reported as raw counts and are thus modelled as such.

We recognise two key metrics that should be reported from these data (formula for the
epidemiology metrics discussed in this report can be found in Section 8.3). The first metric
is the area-by-year standardised incidence ratios (SIRs) (Section 4.1), which are calculated
by dividing the observed counts by the expected counts in each area and year. An SIR
of 1 indicates that the incidence in a particular area is similar to that of the state. The
SIRs derived from the models are equivalent to standardised rate ratios (SRRs) (for the
hospitalisation, ED and notifiable communicable disease data) and standardised mortality
ratios (SMRs) (for the mortality data).

The second metric is ASRs (Section 4.2), which involves direct standardisation of the
area, year and age (AYA) counts to the 2001 Australian Standard Population.

Modelling or smoothing administrative data across areas and years requires both popu-
lation estimates and raw counts by area and year. Poisson models are used extensively in
the field of disease mapping to model raw counts with a necessary offset term (see (3.10));
making them a great choice for the ASR and SIR-type models required in this project. The
difference between the ASR and SIR-type models is the definition of the offset term (see
Table 4). Two versions of ASR models are provided — the ASR ST and ASRA ST models 17

— where the ASRA ST model includes age groups within the model. Figure 11 compares
the posterior ASRs from the ASR ST and ASRA ST models to the raw ASRs.

We acknowledge that metrics are required by sex. Although age-period models include
sex and age in the same model (Riebler and Held 2017), unless otherwise stated, for this
project we recommend fitting separate models for males, females and persons.

Input data by

Model Area Year Age Input data Offset
term

Key model output
calculation ‡ Software Code Eq.

SIR ST ✓ ✓ Counts Expected
counts

Fitted counts
÷ offset CARBayesST 3 (4.1)

ASR ST ✓ ✓ Counts Counts ÷ ASRs Fitted counts
÷ offset CARBayesST 4 (4.3)

ASRA ST ✓ ✓ ✓ Counts Population
Fitted counts
(then calculate
ASR)

nimble 5 (4.5)

Table 4: Summary of models for administrative data. ‡ Grey-coloured text denotes the calculations carried out
on the fitted counts to derive the core metrics. For more details see Sections 4.1.1, 4.2.1, 4.2.2. Approximate run
time for these models is of the order of days to weeks (ASRA ST) or minutes (SIR ST, ASR ST).

17ASRA (Age-Standardised Rate with Age) is not a epidemiology metric but a model identifier we have created to
help differentiate the three recommended administrative ST models.
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4.1 Standardised incidence ratio (SIR)

The most common metric reported in disease mapping applications is the SIR (Cramb et al.
2020). Since an SIR is the observed counts divided by the expected counts, when modelling
SIRs, the offset term is the expected counts (Lee 2011). See the box on page 32. This generic
style of ST model will be denoted as the SIR ST model hereafter.

Consider! Expected counts

The expected counts for the SIR ST model are derived by applying the overall age-
specific rate (across all years and areas) to the known age-specific populations in each
area and year. This means that the SIRs describe the ratio of the current area-by-time
counts to the overall expected counts, which allows examination of temporal trends.

Alternative approaches derive overall age-rates for each year. In this case, the SIRs
describe the ratio of the current area-by-time counts to the time-specific expected
counts. Note that this approach prevents us from obtaining temporal trends.

4.1.1 Model: SIR ST

The SIR ST model requires data by area and year as illustrated in Table 5. The model can
be fitted using the R package CARBayesST, which uses efficient MCMC to fit Bayesian ST
models in R (Lee et al. 2022). Unfortunately this package does not naturally allow the user
to run multiple chains. We have written a wrapper function that automatically runs four
chains18 behind the scenes, returning useful output, including model convergence metrics
(see Code 3).

y E M id T id LGA year N

yit Eit i t
3 6.72 1 1 50080 2011 17807
9 8.88 2 1 50210 2011 32611
2 0.43 3 1 50250 2011 3628
0 1.86 4 1 50280 2011 6133
1 2.57 5 1 50350 2011 7558

10 11.15 6 1 50420 2011 33210
13 6.13 7 1 50490 2011 18318

0 0.37 8 1 50560 2011 782
0 0.20 9 1 50630 2011 866
0 0.34 10 1 50770 2011 818
...

...
...

...
...

...
...

Table 5: Example data structure for the SIR ST model. M id is a sequential identifier for the areas, while T id is a
sequential identifier for the time periods. In the table, yit and Eit are the raw and expected counts for area i and
year t (see (4.1) for details).

18Please review Section 2.1 for details on why multiple chains are used.
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1 # Use the wrapper function to fit 4 chains using CARBayesST

2 SIR_model <- jf$SampleCBST(y ~ offset(log(E)),

3 # Number of MCMC samples to draw for each chain

4 n.sample = 2500,

5 # burn-in

6 nburnin = 1250,

7 # amount to thin by

8 thin = 1,

9 # define the dataset

10 data = df,

11 # binary contiguity weight matrix

12 W = W,

13 # area and year variables in df

14 area = "M_id",

15 year = "T_id",

16 # offset term as a numeric vector

17 ofs = df$E,

18 # observed count as a numeric vector

19 y = df$y)

R Code 3: Example code to fit the SIR ST model.

The model fitted using the jf$SampleCBST() function in R (see Code 3) is specified below.
Let yit and Eit be the raw and expected counts for area i and year t. See Section 8.3 for
calculation of Eit. The SIR ST model uses a Leroux prior for the vector of spatial random
effects (REs), θ = (θ1, . . . , θM ) ∈ RM , an ICAR prior for the temporal REs, γ = (γ1, . . . , γT ) ∈
RT , and a normal distribution for the space-time interaction REs, δ ∈ RMT . Please review
Section 8.1 for help with this notation.

yit ∼ Poisson(µit) (4.1)

log (µit) = log (Eit) + α+ θi + γt + δit

θ ∼ Leroux
(
WS, ρ, σ2

θ

)
γ ∼ ICAR

(
WT, σ2

γ

)
δit ∼ N(0, σ2

δ )

ρ ∼ Uniform(0, 1)

α ∼ N(0, 10002)

σ2
θ , σ

2
γ , σ

2
δ ∼ InvGamma (shape = 1, scale = 0.01)

DOHWA, QUT



4 ADMINISTRATIVE DATA 34

The wrapper function, jf$SampleCBST(), returns the posterior draws for the smoothed
SIRs, which are calculated by performing the following computation for each posterior draw
d,

SIR
(d)
it =

µ
(d)
it

Eit
. (4.2)

The matrix of posterior draws for the fitted counts and SIRs can be accessed by SIR model$fitted draws

and SIR model$rate draws, respectively.

Consider! Population and spatial smoothing

The output of disease mapping models adapt to the population size in each area and
year (i.e. the offset term). That is they provide more smoothing to those areas and years
with small populations and less to those with large populations. Figure 9 illustrates
this behaviour at the health district (HD) level. Observe that the SIRs for HDs with
very large populations are not smoothed by the Bayesian ST model (e.g. the raw and
modelled SIRs agree almost perfectly). In general, the smoothed and raw SIRs become
increasingly different as the population size decreases.

4.2 Age-standardised rates (ASR)

4.2.1 Model: ASR ST

The age-standardised model by year and area, denoted as the ASR ST model, requires the
raw counts for the condition of interest and an offset term given by the raw counts divided
by the ASRs, denoted as N tilde in Table 6. Use of this offset term ensures that the Poisson
model is implicitly modelling the ASRs rather than the crude rates (see Section 8.6 for proof
of this statement). The ASR ST model can also be fitted using the R package CARBayesST.
The data structure (Table 6) is identical to that required for the SIR ST model. Note that
ASRs are age-standardised to the Australian standard population 2001.
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Figure 9: Plots comparing the raw and modelled log SIRs at the health district level. We use the SIR ST model to
obtain the modelled results. Each point is the posterior median of the SIRs from the SIR ST model with corre-
sponding 95% quantile credible intervals. The points are coloured according to the HDs population size. Larger
points also denote larger population sizes. The diagonal line denotes perfect agreement between the log raw SIR
and the modelled log SIR.

y N tilde M id LGA year T id N ASR

yit Ñit i t
3 20078 1 50080 2011 1 17807 0.000149
9 31431 2 50210 2011 1 32611 0.000286
2 5662 3 50250 2011 1 3628 0.000353
0 6133 4 50280 2011 1 6133 0
1 8643 5 50350 2011 1 7558 0.000116

10 38984 6 50420 2011 1 33210 0.000257
13 22034 7 50490 2011 1 18318 0.000590

0 782 8 50560 2011 1 782 0
0 866 9 50630 2011 1 866 0
0 818 10 50770 2011 1 818 0
...

...
...

...
...

...
...

...

Table 6: Example data structure for the ASR ST model. In the table, yit and Ñit are the raw counts and adjusted
populations for area i and year t (see (4.3) for details). Observe that in some cases Ñit can be very different to N,
which is related to the offset adjustment described in Section 8.6.
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1 # Use the wrapper function to fit 4 chains using CARBayesST

2 ASR_model <- jf$SampleCBST(y ~ offset(log(N_tilde)),

3 # Number of MCMC samples to draw for each chain

4 n.sample = 2500,

5 # burn-in

6 nburnin = 1250,

7 # amount to thin by

8 thin = 1,

9 data = df,

10 # binary contiguity weight matrix

11 W = W,

12 # area and year variables in df

13 area = "M_id",

14 year = "T_id",

15 # offset term as a numeric vector

16 ofs = df$N_tilde,

17 # observed count as a numeric vector

18 y = df$y)

R Code 4: Example code to fit the ASR ST model.

The model fitted using the jf$SampleCBST() function in R (see Code 3) is specified below.
Let yit and Ñit be the raw counts and adjusted populations for area i and year t. Please
see Section 8.6 for a description of the adjusted population. The ASR ST model is specified
identically to the SIR ST model, except for the different offset term.

yit ∼ Poisson(µit) (4.3)

log (µit) = log
(
Ñit

)
+ α+ θi + γt + δit

θ ∼ Leroux
(
WS, ρ, σ2

θ

)
γ ∼ ICAR

(
WT, σ2

γ

)
δit ∼ N(0, σ2

δ )

ρ ∼ Uniform(0, 1)

α ∼ N(0, 10002)

σ2
θ , σ

2
γ , σ

2
δ ∼ InvGamma (1, 0.01)

As we saw for the SIR ST model, we can derive the posterior draws for the rates by
performing the following computation for each posterior draw d,
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ASR
(d)
it =

µ
(d)
it

Ñit
. (4.4)

The posterior draws of the ASRs provided by ASR model$rate draws are rates per individ-
ual. Multiplying all draws by 10, 000, for example, would provide posterior draws for the
ASRs per 10, 000 people.

4.2.2 Model: ASRA ST

Since estimates by age are required for reporting, we can also run a variant of the above
model that aggregates the raw counts by area, year and the desired age groups. This model
is denoted as the ASRA ST model (see Table 4). An example of the data structure can be
found in Table 7, which has 6 age groups. Observe that the input data has six times the
number of rows than those data used for the SIR ST and ASR ST models. In the ASRA ST
model the input data are raw counts, the offset is the population (Jay et al. 2021), and age
group is included as a covariate.

y N age M id T id MT id year LGA

yita Nita a i t
0 1065 0-4 years 1 1 1 2011 50080
0 2348 5-14 years 1 1 1 2011 50080
0 2092 15-24 years 1 1 1 2011 50080
1 4164 25-44 years 1 1 1 2011 50080
0 4884 45-64 years 1 1 1 2011 50080
2 3254 65+ years 1 1 1 2011 50080
1 2428 0-4 years 2 1 11 2011 50210
0 4246 5-14 years 2 1 11 2011 50210
0 4855 15-24 years 2 1 11 2011 50210
0 9217 25-44 years 2 1 11 2011 50210
...

...
...

...
...

...
...

...

Table 7: Example dataset for the ASRA ST model. In the table, yita and Nita are the raw counts and populations
for age a, area i and year t, respectively (see (4.5) for details). Notice how the dataset required for the ASRA ST
model will have A×M × T rows.

The age standardisation is calculated afterwards from the area, year and age (AYA) fitted
counts to produce a smoothed ASR by area and year. Of course, this process is applied
to all posterior draws of the fitted counts. The ASRA ST model can be fitted using the R
package nimble (Numerical Inference for statistical Models using Bayesian and Likelihood
Estimation) [3], where we first declare the model using BUGS syntax.

The BUGS syntax (which is read by nimble) required to fit the ASRA ST model can be
found in Code 5 below. Unlike CARBayesST (used for fitting the ASR ST and SIR ST models),
nimble requires a very specific structure of input data; these details will be described in
the training. Like above, we have written an R wrapper function that simplifies several
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steps of modelling with nimble, including reporting the MCMC diagnostics and warnings
(see Section 2.1). An example of the wrapper function can be found in Code 6.

1 code <- nimbleCode({

2 # iterate across all the rows of the data (n_obs)

3 for(i in 1:n_obs){

4 # likelihood

5 y[i] ~ dpois(mu[i])

6 # mean - linear predictor

7 log(mu[i]) <- log(N[i]) + alpha

8 # Fixed effects using the inner product

9 + inprod(B_qr[1:q], Q_ast[i,])

10 # BYM2 spatial term

11 + theta[M_id[i]]

12 # ICAR temporal term

13 + gamma[T_id[i]]

14 # Space time term

15 + delta[MT_id[i]]

16 }

17

18 # Spatial: BYM2 #

19 # iterate across all areas (M)

20 for(i in 1:M){

21 theta[i] <- sigma_theta * (s[i] + v[i])

22 # structured component

23 s[i] <- Z_s[i] * sqrt(rho/kappa)

24 # unstructured component

25 v[i] <- Z_v[i] * sqrt((1 - rho))

26 # standard normal

27 Z_v[i] ~ dnorm(0, 1)

28 }

29

30 # ICAR prior #

31 Z_s[1:M] ~ dcar_normal(adj[1:L_s],

32 weights[1:L_s],

33 num[1:M],

34 1, # unit-variance ICAR

35 # enforce sum-to-zero

36 zero_mean = 1)

37

38 # Space time interaction #
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39 # iterate across all time points and areas (MT)

40 for(i in 1:MT){

41 Z_delta[i] ~ dnorm(0,1)

42 # multiply by sigma_delta

43 delta[i] <- sigma_delta * Z_delta[i]

44 }

45

46 # RW1 prior #

47 Z_gamma[1:T] ~ dcar_normal(T_adj[1:L_t],

48 T_weights[1:L_t],

49 T_num[1:T],

50 1, # unit-variance ICAR

51 # enforce sum-to-zero

52 zero_mean = 1)

53 for(i in 1:T){

54 # multiply by sigma_gamma

55 gamma[i] <- sigma_gamma * Z_gamma[i]

56 }

57

58 # Other priors #

59 # iterate over all elements of B_qr

60 for(i in 1:q){

61 B_qr[i] ~ dnorm(0, sd = 1000)

62 }

63 alpha ~ dnorm(0, sd = 1000)

64 sigma_theta ~ dgamma(2, 0.5)

65 sigma_gamma ~ dgamma(2, 0.5)

66 rho ~ dunif(0,1)

67

68 # recreate true coefficient values

69 B[1:q] <- R_ast_inverse[1:q,1:q] %*% B_qr[1:q]

70

71 })

R Code 5: Example BUGS syntax to fit the ASRA ST model.

The model fitted using Code 5 is given in (4.5) on page 40. Assume access to the raw
count, yita, and population size, Nita, for age category a, in area i and time t. Let Xita ∈
R1×(A−1) be the design matrix of indicators for the A age groups and β ∈ R(A−1)×1 their
respective regression coefficients. Please see the box on page 41 for details in setting an
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appropriate reference age group. Although not explicitly defined in (4.5) below, we use the
QR decomposition (Section 8.8) and non-mean centered parameterisation (Section 8.5) in
Code 5.

To make the connection between Code 5 and the model definition explicit, we index the
likelihood + prior form given below with the corresponding code lines.

Likelihood: line 5

yita ∼ Poisson (µita) (4.5)

Linear predictor: lines 7–15

log (µita) = log (Nita) + α+Xitaβ + θi + γt + δti

Spatial RE: lines 20–36

θ ∼ BYM2
(
WS, ρ, κ, σ2

θ

)
Temporal RE: lines 47–56

γ ∼ ICAR(WT, σ2
γ)

Space-time RE: lines 40–44

δti ∼ N
(
0, σ2

δ

)
Priors: lines 60–66

ρ ∼ Uniform(0, 1)

σθ, σγ , σδ ∼ Gamma(2, 0.5)

α,β ∼ N(0, 10002)

After fitting the ASRA ST model, the dth posterior draw for the ’smoothed’ or modelled
ASRs is given by

ÂSR
(d)

it =
∑
a

µ
(d)
itaN

2001
a

Nita
. (4.6)
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Tech Talk! Reference age level

If convergence is very poor (particularly for the fixed effects), we recommend explicitly
specifying the reference age group. In most cases using an age category with many
counts can help.

When poor convergence is related to the fixed effects, this is most likely due to
sampling of α, which can be empirically estimated as

α̂ = log
( ∑

i

∑
t yitã∑

i

∑
tNitã

)
,

where ã is the reference age group. If the reference age group has no or very few
counts across all years and areas then α̂ → −∞. Given that all the other fixed effects
are constructed as comparisons to the reference group, models such as these will
fail to converge to reasonable values (i.e. will roam around the parameter space and
never find any area of density). For example, with a poorly chosen reference category,
we can recover coefficients as high as 17, which are interpreted as a rate increase of
around 56 million! In cases where MCMC is struggling to converge, we recommend
trying a frequentist run with just the fixed effects (i.e. dropping the spatio-temporal
terms), to determine if the Bayesian fixed effect estimates are plausible. This can be
achieved by running, glm(y ∼ offset(log(N)) + as.factor(age), data = df, family

= "poisson"). For other tricks to help with convergence see Section 2.1.
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1 ASRA_model <- jf$SampleNimble( # BUGS code

2 code = code,

3 # data list

4 nD = nD,

5 # initial value function

6 nI = nI(),

7 # constant list

8 nC = nC,

9 # parameters to monitor

10 monitors = monitors,

11 # total iterations per chain

12 niter = 4000,

13 # burn-in per chain

14 nburnin = 2000,

15 thin = 20,

16 nchains = 4,

17 # check samplers are correct

18 print_samplers = T,

19 # optimize sampling

20 # of the fixed effects

21 optimBeta = T,

22 beta_name = "B_qr",

23 # use an RW_block sampler

24 sampler_name = "RW_block",

25 # decrease adaption during burn-in

26 adaptInterval = 10 # defaults to 200)

R Code 6: Example code to use the wrapper function, jf$SampleNimble(.), to fit models in nimble.
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Consider! Adjusted analysis

There is interest in this project to present adjusted and unadjusted estimates, where
adjusted estimates are derived from models which include covariates for remoteness
and area-level socioeconomic status. These covariates are only available every 5 years
with the census, and in this project 2016 indices will be used in the adjusted models
(i.e. kept constant across time). Since these are area-level covariates, they can readily
be incorporated into any of the models discussed above. Unadjusted estimates are not
adjusted for both remoteness and SEIFA. The calculation of raw SIRs are described in
Section 8.3.

One of the benefits of smoothing administrative data using unadjusted models is
that estimates from each area and year can only learn from their neighbouring areas
and years, resulting in smooth maps. Alternatively, adjusted ST models allow par-
ticular areas and years to differ significantly from the overall ST trends according to
socioeconomic status and remoteness.

Interpreting the differences in model estimates from the adjusted and unadjusted
models is difficult as both models attempt to approximate the data (albeit in different
ways). There are a plethora of metrics that can describe the level of ST variation that is
explained by remoteness and socioeconomic status. Please see Duncan and Mengersen
(2020) for more details.

To fit an adjusted ASRA ST model, the desired variables (e.g. remoteness and/or
socioeconomic indices) must be included in the design matrix, X, for the fixed effects
along with the age group variable.

Figure 10 compares the SIR from a spatial only model. Observe that both the pos-
terior median SIRs and their standard deviations are similar, but not identical. The
Perth specific map displays almost identical SIRs across LGAs, while the WA plot dis-
plays some key differences (particularly in the Pilbara and Midwest). This is most likely
related to the smaller populations in these areas resulting in more model smoothing
occurring (see the box on page 34).
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(a) (b)

(c) (d)

Figure 10: This plot compares SIRs at the LGA level which are derived from adjusted and unadjusted SIR models
(spatial only). The data in this plot are the counts of ear, nose and throat infections for females in 2015. Plot (a)
compares the posterior medians of the smoothed SIRs along with their 95% credible intervals. Plot (b) compares the
posterior standard deviations of the smoothed SIRs. The diagonal black lines in (a) and (b) represents equivalence
between the x and y axes. Plots (c) and (d) compare the raw, unadjusted and adjusted SIRs for all of Western
Australia and greater Perth, respectively.
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4.3 Data sparsity

In some cases, both the SIR and ASR models may be impacted by sparsity (i.e. when many
rows of the input data have very small or zero raw counts). Of course, the ASRA ST model is
more prone to these issues given that its input data is of higher resolution. We are hesistant
to suggest any rules of thumb for when data are considered as sparse as cutoffs should
be dependent on the model, data and objective of the analysis. That said, the impact of
sparsity on model fit can be identified by conducting the model checks recommended in
Section 2.3.

Our empirical explorations suggest that ST models can still provide similar performance
in these severely sparse settings. An example is shown in Figure 5 which illustrates poste-
rior predictive checks for an ASRA ST model fitted to data where approximately 95% of the
rows have zero counts. Note that for the ASRA ST model, our recommendation assumes
that an appropriate reference age group has been chosen. See the box on page 41 for more
details.

It is possible to run more complex models that can handle large amounts of zeroes
(Corpas-Burgos et al. 2018; Neelon et al. 2014), but a general recommendation is to re-
duce the resolution of the data in some dimension, such as by aggregating time periods or,
for the ASRA ST model, further aggregating age groups, and then fitting the ST models dis-
cussed above. The amount of information included when smoothing can also be modified
by tweaking the priors so that instead of smoothing over adjacent time periods, it smooths
over the two previous and subsequent time periods (i.e. a random walk of order 2) (Haining
and Li 2020).

Alternatively, we suggest a simple reparameterisation where the design matrix in (4.5) is
replaced by indicators for the age groups directly.19

yita ∼ Poisson (µita) (4.7)

log (µita) = log (Nita) + α+ βa + θi + γt + δit

βa ∼ N(0, 10002)

δit ∼ N(0, σ2
δ )

θ ∼ BYM2
(
WS, ρ, κ, σ2

θ

)
γ ∼ ICAR

(
WT, σ2

γ

)
ρ ∼ Uniform(0, 1)

σθ, σγ , σδ ∼ Gamma(2, 0.5)

α ∼ N(0, 10002)

We found that for severely sparse data, this parameterisation can offer computational
advantages. However, note that this parameterisation is weakly unidentifiable20 and thus,

19See Section 8.1.2 of McElreath (2020) for more details.
20Unidentifiability is a modelling term that refers to situations where the data alone cannot distinguish between
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Figure 11: Plots comparing raw and modelled age-standardised rates from the ASR ST and ASRA ST models. The
transparency of the points denotes the area-by-year population. The diagonal line denotes equality between the x
and y axes. The error bars denote the 95% credible intervals of the posterior ASRs. The ASRs in these plots are
for the potentially preventable hospitalisations of ear, nose and throat infections for females. The data is at the
health district level from 2011-2020. Plot (a) compares the posterior ASRs from the ASRA ST and ASR ST. Observe
the models’ very strong agreement. Plots (b) and (c) compare the posterior ASRs from the ASR ST and ASRA ST
models to the raw ASRs. Note that both models smooth the ASRs relative to the population size of the area and
time point. In this example, the ASRA ST model took around 6 times longer to fit than the ASR ST model.

should only be used in severely sparse settings, or when the standard ASRA ST model fails
to converge (even after applying the convergence tricks in Section 2.1).

model parameters, which can make inference and computation more difficult.
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Figure 12: Plots comparing the fitted counts (posterior medians) from the three recommended models for admin-
istrative data. The x and y axis represent fitted counts. Observe the almost perfect agreement between the raw
counts (denoted as y) and the modelled/fitted posterior median counts: all the points sit on the line of equality
and all the pairwise correlations are above 0.99.

4.4 Counts

There is also interest in spatially smoothed counts by area, year and age (AYA). From our
empirical investigations, the SIR ST, ASR ST and ASRA ST models should produce rela-
tively similar fitted counts by area and year (see Figure 12). However, in general, we would
recommend using either the SIR ST or, if wanting to separate by age, the ASRA ST model
to derive smoothed counts as these seem to agree better in practice.
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5 Survey data

Data from the Health and Wellbeing Surveillance System (HWSS) survey will be used to pro-
duce prevalence estimates for a variety of health factors ranging from smoking to diabetes to
self-reported health, among many others (Health Survey Unit, Epidemiology Branch 2011).
In the survey data, these health factors are recorded as binary variables, and thus the
overall area-by-year estimates will be proportions. Although we focus on methods for pro-
portions in this report, please review the box on page 71 for details on non-binary variables
such as BMI.

5.1 Small area estimation

Unlike administrative data, which is generally complete, the HWSS survey data are a small
cross-section of the WA population each year. Modelling in these circumstances is far more
onerous than that for administrative data. Fortunately, methods of small area estimation
(SAE) have become commonplace for these kinds of applications (Rao and Molina 2015).
SAE targets the small sample size problem by leveraging auxiliary data (often complete
census data) along with the observed survey data to generate robust estimates for small
areas. In many applications of SAE, researchers use Bayesian hierarchical models along
with survey weights (Chen et al. 2014; Gomez-Rubio et al. 2008; You and Rao 2000).

There are two approaches possible: individual-level and area-level models, and these
differ in the choice of models and structure of the input data (Table 8).

Model Sample
weights

Population
counts Input data Covariates Model output Software Code Eq.

MrP ST± ✓
Individual-level
survey data

Individual- and
area-level
covariates

Fitted
probabilities§

nimble

mcmcsae
7 (5.1)

WMrP ST± ✓ ✓
Individual-level
survey data

Individual- and
area-level
covariates

Fitted
probabilities nimble 7 (5.1)

FHELN ST‡ ✓ ✓

Area-by-year
proportion
estimates and
sampling variances

Area-level
census
covariates

Fitted
probabilities mcmcsae 10 (5.8)

Table 8: Summary of models for survey data. ± Individual level models, ‡ Area level models. §Prevalence esti-
mates are derived from the fitted probabilities via a variety of calculations and aggregations (see Section 5.2.2).
Approximate run time for these models is of the order of days to weeks (MrP ST, WMrP ST) or hours (FHELN ST).

5.2 Individual-level modelling: Multilevel regression and poststratifi-
cation (MrP)

For individual-level survey data, we recommend using a very common Bayesian method
called multilevel regression and poststratification (MrP) (Park et al. 2004). Although ex-
tremely common in election modelling (Ghitza and Gelman 2013), MrP has been applied in
a variety of health fields (Barker et al. 2013; Berkowitz et al. 2016), and has recently been
extended to ST applications (Gao et al. 2021).
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MrP requires individual-level survey data (Table 9) and poststrata data (Table 10). The
poststrata dataset should have a row for all unique combinations of the factors included in
the model (e.g. area, time, age, sex). Each unique combination is called a cell. For each cell
in the poststrata data one also requires the corresponding census populations. Note that
MrP models should include all persons in the surveys, rather than stratify by sex before
modelling.

MrP has several benefits over many SAE methods, which include: modelling at the
individual-level as opposed to the area-level; simple prediction for any cell combination
of interest; automatic weighting to accommodate nonresponse and sample bias; access to
probabilities for cells not observed in the data (Ghitza and Gelman 2013); and relatively
simple implementation. MrP is best described in two steps:

q Model fitting: Fit an ST logistic model to the individual-level survey data

q Poststratification: Derive fitted probabilities from the logistic model for each cell of the
poststrata data and multiply these by the known census population counts.

By summing across all cells apart from area and year, MrP can provide estimates for
the proportion or number of persons with the health factor in each area and year. The
uncertainty of the prevalence estimates from MrP can be estimated by applying the post-
stratification step to all posterior draws of the fitted probabilities.

MrP is best suited to adjust for sampling bias when survey weights are unavailable. If
all variables used to derive the survey weights are known, available and included in the
MrP model, then the sample design becomes ignorable and the inclusion of survey weights
unnecessary. This standard MrP model will be denoted as MrP ST hereafter and can be
fitted using the R packages mcmcsae (Boonstra and Baltissen 2021) and nimble (de Valpine
et al. 2017).

Consider! Survey weights

In practice the MrP ST model should be avoided as it does not accommodate the survey
design (i.e. does not use the individual-level survey weights). Further, we recommend
using the WMrP ST model (see below), as only a single line of nimble code is needed to
convert the WMrP ST to the MrP ST model.

The previous procedure for deriving weights for the HWSS survey data was relatively
simple, involving stratification by only several variables that could be easily included in
the MrP ST model. However, the weighting procedure for the HWSS survey is amidst a
significant change, that will result in more precise survey weights derived from many more
census covariates. It will not be possible to adjust for all these variables in the MrP model
and thus a weighted version of MrP ST is recommended moving forward.
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smokes sex age M id T id MT id RA Name IRSD 5 TERTIARYQ P

yjit i t
0 Female 1 1 1 1 Outer Regional 3 57.66
1 Female 1 1 1 1 Outer Regional 3 57.66
0 Male 1 2 1 2 Major Cities 3 58.30
0 Male 1 2 1 2 Major Cities 3 58.30
0 Female 1 3 1 3 Very Remote 5 72.29
0 Female 1 3 1 3 Very Remote 5 72.29
0 Female 1 4 1 4 Inner Regional 4 65.72
0 Female 1 4 1 4 Inner Regional 4 65.72
0 Female 1 5 1 5 Major Cities 4 60.95
0 Male 1 5 1 5 Major Cities 4 60.95
...

...
...

...
...

...
...

...
...

Table 9: Example of individual-level survey data for input to the MrP ST and WMrP ST models, where yjit denotes
the binary smoking variable for sampled individual j in area i and time t (see (5.1) for more details of the notation).
These data have n observations. To illustrate how the area-level covariates are constant for individuals in the
same area and time point, we have included area-level remoteness (RA Name), SEIFA (IRSD 5) and the proportion of
persons with a tertiary education (TERTIARYQ P). As before, M id and T id are sequential identifiers for the areas
and years, respectively.

5.2.1 Model: WMrP ST — model fitting

Until recently it has not been clear how to incorporate survey weights into the Bayesian
MrP framework (Kolczynska et al. 2022). Fortunately, one can leverage Bayesian pseudo-
likelihood which adjusts the parameter estimates according to the sample design (Savitsky
and Toth 2016).

The weighted MrP model (denoted as WMrP ST) is estimated using the following nimble

code.

1 code <- nimbleCode({

2 # vectorised pseudo-likelihood for Bernoulli

3 y[1:n] ~ dwbern_v(# sample scaled weights

4 w = w[1:n],

5 # vector of probabilities

6 p = p[1:n])

7

8 # iterate across all the rows of the data (n)

9 for(i in 1:n){

10 # linear predictor

11 logit(p[i]) <- alpha +

12 # Fixed effects using the inner product

13 + inprod(B_qr[1:q], Q_ast[i,])

14 # BYM2 spatial term

15 + theta[M_id[i]]

16 # ICAR temporal term
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17 + gamma[T_id[i]]

18 }

19

20 # Spatial: BYM2 #

21 # iterate across all areas (M)

22 for(i in 1:M){

23 theta[i] <- sigma_theta * (s[i] + v[i])

24 # structured component

25 s[i] <- Z_s[i] * sqrt(rho/kappa)

26 # unstructured component

27 v[i] <- Z_v[i] * sqrt((1 - rho))

28 # standard normal

29 Z_v[i] ~ dnorm(0, 1)

30 }

31

32 # ICAR prior #

33 Z_s[1:M] ~ dcar_normal(adj[1:L_s],

34 weights[1:L_s],

35 num[1:M],

36 1, # unit-variance ICAR

37 # enforce sum-to-zero

38 zero_mean = 1)

39

40 # RW1 prior #

41 Z_gamma[1:T] ~ dcar_normal(T_adj[1:L_t],

42 T_weights[1:L_t],

43 T_num[1:T],

44 1, # unit-variance ICAR

45 # enforce sum-to-zero

46 zero_mean = 1)

47 # multiply by sigma - scalar by vector multiplication

48 gamma[1:T] <- sigma_gamma * Z_gamma[1:T]

49

50 # Other priors #

51 # iterate over all elements of B_qr

52 for(i in 1:q){

53 B_qr[i] ~ dnorm(0, sd = 1000)

54 }

55 alpha ~ dnorm(0, sd = 1000)

56 sigma_theta ~ dgamma(2, 0.5)

57 sigma_gamma ~ dgamma(2, 0.5)
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58 rho ~ dunif(0,1)

59

60 # recreate true coefficient values

61 B[1:q] <- R_ast_inverse[1:q,1:q] %*% B_qr[1:q]

62

63 })

R Code 7: Example BUGS syntax to fit the WMrP ST model.

The model shown in Code 7 is written as follows. Note that n is the total number of
sampled persons across all areas and time points. Let yjit be a binary variable (taking
values of 0 or 1 to denote presence of the condition) for sampled individual j in area i and
time t.

yjit ∼ Bernoulli (pjit)wjit (5.1)

logit (pjit) = α+Xjitβ + θi + γt

θ ∼ BYM2
(
WS, ρ, κ, σ2

θ

)
γ ∼ ICAR(WT, σ2

γ)

ρ ∼ Uniform(0, 1)

σθ, σγ ∼ Gamma(2, 0.5)

α,β ∼ N(0, 10002)

Note that we do not include a space-time interaction in this model as we cannot assume
that all areas across all time points have been sampled.

The notation of Bernoulli (pjit)wjit given in (5.1), denotes the pseudo-likelihood compo-
nent of this model, where wjit = wrjit

n∑
wr

jit
are the sample scaled weights and wrjit are the

raw weights available from the HWSS data. Pseudo-likelihood involves weighting each like-
lihood contribution by its corresponding wjit. Following the notation of (2.1) on page 9, the
pseudo log likelihood is of the form

∑
i

wilog p (yi|P) . (5.2)

Pseudo-likelihood approaches can be crudely implemented in nimble, however we found
it more efficient to use a vectorised version of the pseudo-likelihood function. This user-
created function, dwbern v(), is implemented on line 3 of Code 7.

The motivation for using pseudo-likelihood is to ensure that the posterior distribution is
similar to that from the same specified MrP model fit to the entire population. The sample

DOHWA, QUT



5 SURVEY DATA 53

scaling of the survey weights ensures that the posterior distribution has the correct un-
certainty given the sample size and sample design. Note that by fixing all wjit = 1, we can
easily fit the MrP ST model using Code 7. See the box on page 49.

The fixed effect design matrix, Xjit in (5.1), will generally include a variety of unit-level
and area-level covariates. Code 8 shows how to construct this matrix. In the example we
use the interaction of age group and sex, along with many area level covariates including
area-level remoteness and socioeconomic status.

1 X <- model.matrix(~agegroup2*sex + RA_Name + IRSD_5

2 + Tot_P_FP + sqrt(Tot_Indigenous_PP)

3 + lowincome_Totp + TERTIARYQ_P

4 + OLOMW_P + Age_yr_35_39_MP

5 + Age_yr_15_19_FP,

6 # what dataset

7 data = df)

R Code 8: Constructing the design matrix for the WMrP ST model. In practice, we also take the QR decomposition
of X (Section 8.8).

5.2.2 Model: WMrP ST — poststratification

After we fit the WMrP ST model we must derive the probabilities for all combinations of the
individual-level covariates for each area and year. For the example in Code 8, we would
require probabilities for all combinations of sex, age, area and year, even if these combina-
tions did not appear in the survey data explicitly. To generalise our notation, we’ll let pfit
denote the probability for the fth (f = 1, . . . , F ) combination of age and sex in area i and
time t. Thus, the poststrata dataset should have F ×M × T rows (see Table 10).

Consider! Population counts

MrP models require population counts, Nfit, for all combinations of f, i and t. This
can become restrictive in situations where more individual-level covariates must or
should be included. For example, if we believe that smoking should be modelled by
the individual covariates of income, occupation, education, sex, and age, then F be-
comes all these combinations. Without access to microdata, publicly available census
counts for all F in all areas and years will not be accessible. In most applications, F
is conveniently chosen to align with the data that is available, however these practical
decisions do not always correspond with the best MrP model.

Once we derive the unique probabilities, p ∈ R(F×M×T )×1, we multiply them by their
corresponding populations to get estimated counts. Finally, to derive the area by year
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Probability sex age M id T id MT id RA Name IRSD 5 TERTIARYQ P

p111 Male 1 1 1 1 Outer Regional 3 57.66
p211 Female 1 1 1 1 Outer Regional 3 57.66
p121 Male 1 2 1 2 Major Cities 3 58.30
p221 Female 1 2 1 2 Major Cities 3 58.30
p131 Male 1 3 1 3 Very Remote 5 72.29
p231 Female 1 3 1 3 Very Remote 5 72.29
p141 Male 1 4 1 4 Inner Regional 4 65.72
p241 Female 1 4 1 4 Inner Regional 4 65.72
p151 Male 1 5 1 5 Major Cities 4 60.95
p251 Female 1 5 1 5 Major Cities 4 60.95

...
...

...
...

...
...

...
...

...

Table 10: Example structure of the poststrata dataset for the MrP ST and WMrP ST models. Note that the post-
strata dataset can become very large as F increases. For this example, we have 3 age groups and 2 sex groups,
and thus F = 6. This means that the poststrata dataset will have 7344 rows (F = 6,M = 136, T = 9).

prevalence estimates, p̂it, we sum across all the F categories and divide by the area and
year populations. Of course, these calculations are complete for each posterior draw of the
model parameters from nimble.

To simplify the computation we use a series of matrix multiplications within for loops,
which are shown in Code 9 and described below.

p(d) = logit−1
(
α(d) +Qβ(d),qr +Gλ(d)

)
(5.3)

p̂
(d)
it =

∑
f

(
Nfitp

(d)
fit

)
∑
f Nfit

Let λ(d) =
(
θ(d),γ(d)

)
∈ R(M+T )×1 and G ∈ RN×(M+T ). The matrix G is a sparse matrix

that specifies the area and year for each row of the poststrata dataset. Please see Section
8.1 for details on the G and λ matrices and Section 8.8 for details on the Q and βqr matrices.

Although we’ve discussed prevalence estimates by area and year only, the vector p(d) =(
p
(d)
111, . . . , p

(d)
FMT

)
in (5.3) gives prevalence estimates by age, sex, area and year. Thus, we can

collapse/aggregate across any of these variables to derive prevalence estimates.

1 # Extract posterior draws for ALL parameters

2 # get samples from wrapper function

3 fit_draws <- as.matrix(WMrPST_fit$fit$samples)

4

5 # get draws for specific parameters - iterations by MT

6 # use user-made function to select the correct matrix of draws

7 alpha <- jf$getSubsetDrawsNimble(fit_draws, "alpha")

8 beta <- jf$getSubsetDrawsNimble(fit_draws, "B_qr\\[")

9 # both spatial and temporal random effects - iterations by MT
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10 lambda <- cbind(jf$getSubsetDrawsNimble(fit_draws, "theta\\["),

11 jf$getSubsetDrawsNimble(fit_draws, "gamma\\["))

12

13 # construct the sparse G matrix for poststrata

14 G <- Matrix(cbind(

15 # ensure no intercept

16 # spatial, temporal

17 model.matrix(~as.factor(M_id) - 1, data = poststrata),

18 model.matrix(~as.factor(T_id) - 1, data = poststrata)

19 # sparse makes computations much faster

20 ), sparse = T)

21

22 # Posterior draws for counts - all rows of poststrata matrix

23 # empty matrix of iterations by `nrow(poststrata)`

24 counts <- matrix(NA,

25 nrow = length(alpha),

26 ncol = nrow(poststrata))

27 # add a progress bar

28 pb <- txtProgressBar(min = 0, max = length(alpha), style = 3)

29 for(i in 1:length(alpha)){

30 # returns a vector of probabilities of length `nrow(poststrata)`

31 linear_predictor <- as.numeric(jf$jinvlogit(alpha[i]

32 # fixed effects

33 + QR_ps$QR$Q_ast %*% beta[i,]

34 # random effects

35 + G %*% lambda[i,]))

36 # population by probabilities gives counts

37 counts[i,] <- poststrata$N * linear_predictor

38 setTxtProgressBar(pb, i)

39 }

40 close(pb) # remove the progress bar

41

42 # get posterior draws by area and year

43 # we need the population by area and year

44 temp <- poststrata %>%

45 group_by(MT_id) %>%

46 summarise(N = sum(N))

47 # create temporary function to

48 # apply to each row of `counts`

49 # sum counts across sex and age and then

50 # divide by corresponding population
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51 foo <- function(x){aggregate(x,

52 list(poststrata$MT_id), sum)[,2]/temp$N}

53

54 # apply foo to each row of `counts`

55 mrp_prev_draws <- t(apply(counts, 1,

56 FUN = foo))

57 # ordered according to MT_id

58 # iterations times MT

59

60 # keep environment clean

61 rm(temp, foo) # remove `temp` and `foo`

R Code 9: Example code for the poststratification step of the MrP ST or WMrP ST models.

The R object mrp prev draws in Code 9 gives a matrix of posterior draws (as rows) and
areas and years (as columns) which can then be summarised as needed.

Tech Talk! Model checking for logistic regression

Model checking for logistic regression requires slightly different techniques to those
recommended in Section 2.3. Useful options include:

• Posterior predictive checks (particularly the mean of the data)

• Examine the predictive performance of the model (sensitivity, specificity, etc)

• Examine the receiver operating characteristic (ROC) curve and the area under
this curve (AUC) (see Figure 13).

Note that most of these options are related to model selection (Section 5.4).
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Figure 13: Comparison of the receiver operating characteristics (ROC) curves for two logistic models. The ROC
curves compare the specificity and sensitivity of the predictions from the two models. On the bottom right of the
plot we provide the area under the ROC (AUC), AIC and BIC (see Section 5.4). Higher values of AUC are preferred
and thus, we would select the model represented by the red ROC.
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5.3 Area-level modeling: Fay-Herriot

In some cases, MrP is not feasible, especially with temporal data, where the input datasets
can become increasingly large. Standard MCMC algorithms are generally not optimised to
be scalable to large datasets. In the case of the temporal HWSS survey data, where there
are over 50,000 data points across LGAs and years, run time can exceed 5 days.

Area-level SAE models are a useful alternative to individual-level SAE models when com-
putational feasibility is of great concern and/or where access to the individual-level survey
data is unobtainable. The very common Fay-Herriot (FH) area-level model (Fay and Herriot
1979) only requires survey data summaries by area and year; a significantly smaller dataset
than that required for individual-level models. These area by year summaries correspond
to both a weighted proportion estimate, p̂it, and sampling variance, ψ̂it, for area i and year
t which are estimated from the individual-level survey data. These area by year summaries
are often called direct estimates as they rely only on the sampled individuals within that
area and year. See the box on page 61 for details on how to derive the direct estimates.

By using the survey weights in the proportion estimates and sampling variances, the FH
model ensures that the resulting model estimates are unbiased under the sample design.
Given that the FH model is a special case of standard Bayesian hierarchical models, spatial
and temporal terms can be easily included (Gomez-Rubio et al. 2008). Although initially
proposed for continuous outcomes, the FH model can also be used for proportions by apply-
ing an empirical logistic transformation prior to modelling (Mercer et al. 2014) (see Section
5.3.1). We’ll denote the area-level ST FH empirical logistic model as the FHELN ST model
(see Table 8). The FHELN ST model can be fitted in the R package mcmcsae, which provides
an efficient means of estimating complex SAE models using Bayesian inference (Boonstra
and Baltissen 2021). R Code for fitting the FHELN ST model are provided in Code 10, with
detailed explanation in the following pages.

1 # use GVF to impute unstable sampling variances

2 # fit the GVF using OLS

3 gvf <- lm(log(phat_u_SE) ~ log(n) + log(N) + jf$jlogit(HT), data = df)

4 # generate phat_u_SE values for all areas and years

5 imputed <- exp(predict(gvf, newdata = df))

6 # phat_u_SE_smoothed will be equal to the GVF estimate if

7 # `unstable` is true

8 df$phat_u_SE_smoothed <- with(df, ifelse(unstable, imputed, phat_u_SE))

9 # sort by area and time

10 df <- arrange(df, MT_id)

11

12 # Set linear predictor details

13 # the reg(.) gives the fixed effects

14 lp <- phat_u ~ reg(~ 1 + RA_Name + IRSD_5 + Tot_P_FP +

15 sqrt(Tot_Indigenous_PP) +
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16 lowincome_Totp + TERTIARYQ_P + OLOMW_P +

17 Age_yr_35_39_MP +

18 Age_yr_15_19_FP, name = "beta") +

19 # Random walk for the temporal term

20 gen(factor = ~ RW1(T_id), prior = pr_invchisq(df = 1))+

21 # BYM for spatial terms

22 # ICAR component - spatially structured

23 gen(factor=~spatial(M_id, poly.df = map_sp,

24 snap = T, queen = T),

25 prior = pr_invchisq(df = 1))+

26 # unstructured component

27 gen(factor=~iid(M_id), prior = pr_invchisq(df = 1))

28

29 # create sampler

30 sampler <- create_sampler(lp, # linear predictor

31 sigma.fixed = TRUE,

32 # Q0 is precision (1/SE^2)

33 Q0=1/(df$phat_u_SE_smoothed)^2,

34 linpred = "fitted",

35 data = df)

36

37 # fit the FH ELN model using MCMC

38 # usable draws: (n.iter - burnin) * n.chain

39 FHELNST_fit <- MCMCsim(sampler,

40 store.all = T,

41 n.chain = 4,

42 n.iter = 8000,

43 burnin = 4000,

44 thin = 2,

45 verbose = T)

46

47 # get Nimble-like summary measures

48 summary <- jf$mcmcsaeGetSummaries(FHELNST_fit,

49 # time (mins) to fit

50 # the FHELNST model

51 time = diff)

R Code 10: Example code to fit the FHELN ST model.
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5.3.1 Fay-Herriot model

The FH model (Fay and Herriot 1979) was originally developed for continuous data, however
we are working with proportions which are bounded between 0 and 1. Furthermore, MCMC
can be far more efficient when utilising a normal likelihood rather than alternatives such as
the Beta distribution. Thus, prior to modelling we convert the direct proportion estimates
and sampling variances to the unconstrained space (denoted by the superscript u) using
an empirical logit transformation (Mercer et al. 2014).

p̂u
it = logit (p̂it) (5.4)

ψ̂u
it = ψ̂it [p̂it (1− p̂it)]

−2

It is the above quantities that are used as input into the FHELN ST model. See example
data in Table 11.

phat phat u phat VAR phat u VAR n N M id T id TERTIARYQ P IRSD 5 Tot P FP lowincome Totp

p̂it p̂u
it ψ̂it ψ̂u

it nit Nit i t
0.16 -1.68 0.00097 0.06 298 27434 1 1 57.66 3 50.65 7.34
0.11 -2.13 0.0013 0.14 87 50788 2 1 58.30 3 50.25 6.01
0.17 -1.60 0.0042 0.22 35 8334 3 1 72.29 5 27.64 2.88
0.05 -3.02 0.0011 0.55 73 9526 4 1 65.72 4 50.03 6.87

0.001 -6.91 4 1832 9 1 55.10 3 47.07 8.21
0.001 -6.91 10 824 14 1 52.81 2 49.30 4.14
0.001 -6.91 3 428 21 1 48.68 3 47.45 7.56
0.001 -6.91 8 929 23 1 57.71 5 49.79 6.94

...
...

...
...

...
...

...
...

...
...

...

Table 11: Example dataset for the FHELN ST model. In the table, p̂it and p̂u
it represents the direct proportion esti-

mate and unconstrained estimate for area i and time point t, respectively. Furthermore, ψ̂it and ψ̂u
it represent the

direct proportion sampling variance and unconstrained sampling variance for area i and time point t, respectively.
Finally, nit and Nit give the sample size and population size for area i and time t, respectively. See the following
pages for notation details. Note that for unstable direct estimates (the final 4 rows above), there are no variance
estimates.
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Tech Talk! Formula for direct estimates and sampling variance

In our exploratory work, we used the following formula to derive the direct proportion
estimates and sampling variances. Let nit and Nit be the sample size and population
size in area i at time t. We also rescale the survey weights to sum to the area-by-year
sample sizes (e.g. nit =

∑
j wjit).

p̂it =

∑
j wjityjit∑
j wjit

(5.5)

ψ̂it =
1

nit

(
1− nit

Nit

)(
1

nit − 1

)∑
j

(
w2
jit (yjit − p̂it)

2
)

(5.6)

Weighted means such as these are referred to as Hajek or Horvitz–Thompson esti-
mators (Rao and Molina 2015).

Use of area-level models is not conditional on these specific formulae. These quan-
tities have already been derived for the DOHWA Public Health Atlas project and thus
there is little need to adopt these formulae moving forward. The critical element is
keeping the formula consistent throughout analysis.

5.3.2 Generalised variance functions

Although area-level models offer significant computational advantages over their individual-
level competitors, in the proportion setting area-level models can suffer from instability.
Instability occurs when a weighted proportion estimate is exactly zero or 1, which makes
the sampling variance infinite or zero.

Consider an area i and time t with nit = 3 and binary observations yit = (0, 0, 0). In this
example, regardless of the survey weights, p̂it, ψ̂it = 0 — the estimate is unstable. Applying
the empirical logistic transformation in (5.4) to this unstable estimate results in p̂it, ψ̂it being
zero or undefined. Unstable area-by-year direct estimates such as these cannot be included
in the FHELN ST model without necessary adjustment.

Although ad-hoc, we recommend perturbing any unstable direct proportion estimates
prior to modelling. For example, the p̂it in the 5th row of Table 11 was originally 0 but has
been perturbed to 0.001. A similar perturbation would be performed for direct proportion
estimates of exactly 1 (e.g. setting them to 0.999). The user-supplied function jf$jDirect()

automatically applies these perturbations prior to performing the transformations in (5.4).
The function also allows the user to define the size of the perturbation via the eps argu-
ment. Note that some consideration should be given to the size of the perturbation because
extremely small values (e.g. eps = 0.00001) can create extreme outliers on the logit scale.

Unlike the simple solution we recommend for unstable direct estimates, a more complex
solution is required to correct the sampling variances. Generalised variance functions (GVF)
(Wolter 2007) can be used to approximate the undefined (or zero-valued) sampling variances
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by modelling the relationship between the stable sampling variances and other area-by-year
covariates. Common choices are the stable direct estimates, sample sizes and population
sizes (Das et al. 2021). The GVF we recommend takes the following form,

log

√
ψ̂u
it ∼ N

(
µit, σ

2
ϵ

)
(5.7)

µit = α+ β1 log nit + β2 logNit + β3p̂
u
it

where the model parameters are estimated using frequentist ordinary least squares (see
Code 10). By leveraging the GVF fitted to the stable sampling variances, we replace the
undefined (or unstable) sampling variances using

ψ̂u
it = (eµit)

2
.

In practice, one should investigate the validity of the GVF and choose appropriate co-
variates to maximise its predictive capability (via R2). An example of a well specified GVF is
shown in Figure 14 on page 63.

Consider! Avoiding GVFs in the FHELN ST model

GVFs are used extensively in SAE to smooth all sampling variances (i.e. replace even
the stable values) (Das et al. 2021). We discourage this practice and recommend only
replacing undefined sampling variances using GVFs.

An alternative to GVFs is to remove all unstable estimates during modelling, in the
hope to impute these after using the fitted model. When instability is extremely low,
then this approach is feasible. However, for extremely sparse survey data or extremely
common or rare conditions, where many area-by-year estimates are unstable, removing
unstable estimates may result in dropping a large portion of the data: a practice that
should be avoided.
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Figure 14: Example of a GVF which can model the relationship between the sampling variance and sample size.

In this plot, log
√
ψ̂u
it is on the y-axis, while the corresponding sample size, lognit, on the x-axis. The red line

denotes the OLS fit which gives an R2 ≈ 0.85.

5.3.3 Model: FHELN ST

By using the GVFs correctly, all p̂u
it, ψ̂

u
it are approximately stable. Thus, we can specify the

FHELN ST model as follows, where pu
it is the proportion estimate of interest.

p̂u
it ∼ N

(
pu
it, ψ̂

u
it

)
(5.8)

pu
it = α+Xitβ + si + vi + γt

s ∼ ICAR
(
WS, σ2

s

)
vi ∼ N

(
0, σ2

v

)
γ ∼ ICAR(WT, σ2

γ)

σ2
s , σ

2
v , σ

2
v ∼ Invχ2 (1)

α,β ∼ 1

Note that Invχ2 (1) is the inverse χ2 distribution with 1 degree of freedom and ∼ 1 de-
notes a flat prior. mcmcsae is yet to implement the BYM2 prior and thus, we use the BYM
specification for the spatial random effects (Besag et al. 1991) (see Section 3.3.2).
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Tech talk! Adaptive smoothing with the FH model

The FH model has adaptive smoothing properties, which makes it ideal in settings
where the sample sizes vary considerably across space and time. We would like the
model to trust p̂u

it when the sample size is large, while trust pu
it when the sample size is

small. That is, we would like our SAE model to automatically decide how much of the
direct, p̂u

it, and modelled estimate, pu
it, to use. By rewriting the FH model as a weighted

mean,

pu
it = ritp̂

u
it + (1− rit) (α+Xitβ) ,

where rit =
σ2
s+σ

2
v+σ

2
γ

σ2
s+σ

2
v+σ

2
γ+ψ̂

u
it

and represents the ratio of spatio-temporal variation rel-

ative to the total variation. Notice that as the unconstrained sampling variance, ψ̂u
it,

approaches zero (i.e. the direct estimate becomes very certain), rit → 1, which means
pu
it ≈ p̂u

it. This is exactly the behaviour we would like the model to exhibit.

By assuming that not all combinations of the areas and years will have been sampled,
we cannot use the inverse logit transformation of pu

it alone. Similar to the poststratification
process used previously (see Code 9), we follow similar steps to derive the posterior draws
for the prevalence for all areas and years, p(d) ∈ RMT .

p(d) = logit−1
(
α(d) +Xβ(d) +Gλ(d)

)
(5.9)

Let λ(d) =
(
s(d),v(d),γ(d)

)
∈ R(2M+T )×1 and G ∈ RN×(2M+T ). The matrix G is a sparse

matrix that specifies the area and year for each row of the poststrata dataset.
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Consider! Individual-level or area-level

Figures 15, 16 and 17 compare the smoothed prevalence estimates from the FHELN ST
and WMrP ST models for a very sparse condition (stroke) and a common condition
(sufficient fruit consumption). The data are derived from the 2011-2019 individual-
level HWSS survey data. Both models use the same area-level covariates (see Code 10)
while the WMrP ST model also includes sex and age at the individual level.

The state prevalence of stroke is around 2%, which results in about 50% of area-
by-year p̂it values being unstable. This level of instability makes the area-level model
a poor choice; the plots support this. Figure 16 compares the prevalence estimates
of stroke stratified by the sample size and coloured according to whether the relative
standard error (RSE) of p̂it is less than the cutoff of 50% (see Section 8.3 for details
of RSEs). For large sample sizes (bottom left) the estimates from the FHELN ST and
WMrP ST models agree very well. Conversely, for small sample sizes the prevalence
estimates correspond very poorly. In particular, note how the FHELN ST model pre-
dicts some values as high as 0.8 while the WMrP ST model gives a (more appropriate)
estimate around 0.02. This confirms that for these severely sparse data, area-level
models can provide inadequate and implausible estimates. Furthermore, observe in
plot (b) of Figure 17 that almost all the WMrP ST estimates have RSEs below 50% while
a majority of the estimates from the FHELN ST model are above the cutoff. For sparse
conditions such as stroke, it is clear that the WMrP ST is far superior.

As expected, the conclusions above do not hold for fruit consumption (Figure 15).
The state prevalence of fruit consumption is around 50% where only 10% of the area-
by-year p̂it values are unstable. The small level of instability makes the FHELN ST
a more efficient choice given that inference is very similar to that from the far more
complicated WMrP ST model (see the RSEs in Figure 17). Note that the FHELN ST took
only 1 minute to fit, while the WMrP ST took over 4.5 days. Given the huge time gains
in using the FHELN ST model, we recommend this model for common conditions.

Although we are hesitant to give strict cutoffs that class a condition as common or
sparse, the WMrP ST model should perform well in all scenarios, so if one is unsure
then the WMrP ST model should be used.

Variables were selected using some of the methods discussed in Section 5.4. How-
ever this process was not extensive. Given that results can differ dramatically when
different covariates are included, the results here are mostly for illustration purposes.
One can always strive to improve the predictive accuracy of SAE models with more (or
less) complicated models.
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Figure 15: Comparison of modelled prevalence estimates of fruit consumption (frt13) at the LGA level from 2010–
2019. The plots compare the area-by-year estimates from the WMrP ST and FHELN ST models by displaying the
posterior medians and credible intervals on both axes (e.g. a single point gives the posterior medians and 95%
credible intervals from both the WMrP ST and FHELN ST models). The four quadrants indicate different area-by-
year samples sizes and the colours describe the RSEs of the direct estimates. The bottom left quadrant compares
the prevalence estimates for those area-by-year combinations with no sample data. Note that [1, 9] denotes all
sample sizes from 1 to 9 inclusive, whilst (9, 35] denotes sample sizes above 9 but less than 35.
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Figure 16: Comparison of modelled prevalence estimates of stroke at the LGA level from 2010–2019. The plots
compare the area-by-year estimates from the WMrP ST and FHELN ST models by displaying the posterior medians
and credible intervals on both axes (e.g. a single point gives the posterior medians and 95% credible intervals
from both the WMrP ST and FHELN ST models). The four quadrants indicate different area-by-year samples sizes
and the colours describe the RSEs of the direct estimates. The bottom left quadrant compares the prevalence
estimates for those area-by-year combinations with no sample data. Note that [1, 9] denotes all sample sizes from
1 to 9 inclusive, whilst (9, 36] denotes sample sizes above 9 but less than 36.
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(a) (b)

Figure 17: Plot (a) compares the relative standard errors (RSEs) of the direct prevalence estimates of fruit con-
sumption to prevalence estimates from the FHELN ST and WMrP ST models. Estimates are ordered according to
the RSE of the direct estimates. The light grey section indicates prevalence estimates with RSEs below 25%, while
the dark grey section indicates prevalence estimates with RSEs between 25% and 50%. Plot (b) compares the RSEs
for stroke.

Tech talk! Benchmarking in SAE

Assume a reliable Western Australia state prevalence estimate is p̂State
t for time point t.

Ideally we would like the following to hold, where WB
it =

Nit

Nt
.

p̂State
t =

∑
i

WB
itpit

That is the state prevalence, p̂State
t , is equal to the weighted sum of the prevalence

estimates, pit. However, in practice, this never holds.
Therefore, using ratio benchmarking (Rao and Molina 2015), we multiply each area-

by-year prevalence estimate by the following common adjustment factor,

c
(d)
t =

p̂State
t∑

iW
B
itp

(d)
it

,

for each posterior draw.
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5.4 Model/variable selection

Although convergence and model checking are necessary steps for all Bayesian models,
model selection will be most applicable when modelling the survey data. The performance
of small area estimation models rely on a set of well-chosen covariates and random effects.
Thus, model/variable selection is an important topic for small area estimation and requires
considerable time and effort.

There are a large amount of resources that describe methods of variable selection in the
Bayesian framework. The current state of the art being the Widely Applicable Information
criteria (WAIC) (Vehtari et al. 2017), which is estimated using all the posterior draws from
MCMC. For more information on Bayesian variable selection, we recommend the accessible
introduction in Chapter 10 of McElreath (2020).

5.4.1 MrP ST

Given the high computational burden required to fit even a single Bayesian MrP model, there
has been significant work in automating variable selection techniques for MrP-style models
(Ornstein 2020; Si et al. 2020). However, a detailed investigation of these approaches are
beyond the scope of this project.

Instead of comparing multiple MrP models via WAIC, which would be extremely com-
putationally costly, we recommend an efficient alternative: use a frequentist estimation
procedure for variable selection. This can be carried out in the R package lme4 (see Code
11), and is a recommended approach in Goldstein (2011). Likewise, Ghitza and Gelman
(2013) used frequentist methods (e.g. lme4) in their MrP work. Although the models fit in
lme4 are not the same as those fitted in Code 7, computation is around 320 times faster:
the key benefit to using this approach.

Rao and Molina (2015), like others (Tzavidis et al. 2018), recommend the Akaike Infor-
mation Criteria (AIC) and Bayesian Information Criteria (BIC) 21 as frequentist model se-
lection tools for SAE hierarchical models. Note that the conditional AIC (cAIC) is generally
preferred over the AIC, however, for Bernoulli likelihoods, the cAIC requires bootstrapping
(Säfken et al. 2018) which can be extremely computationally expensive for big data such as
the temporal HWSS survey data.

The validity of our suggested approach stems from the following assumptions:

q Fixed effect coefficient estimates are generally unaffected by random effects. Thus, by
using the standard normal random effects in lme4 as opposed to the spatial and tem-
poral random effects given in (5.1), we should recover similar regression coefficients.

q By using sufficiently uninformative priors, fixed effect coefficient estimates are gener-
ally similar in Bayesian or frequentist settings.

q By using AIC and BIC our choice of covariates should be relatively similar to those we
would make using nimble (Goldstein 2011).

21Please see Gelman et al. (2014b) for an introduction to the AIC, BIC and WAIC.
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In addition to the above suggestion, see Figure 13 for an example of how ROC curves
can be used in conjunction with AIC and BIC to select the preferred logistic model.

1 # With area-level covariates

2 fit1 <- glmer(y ~ ageg*sex + RA_Name + IRSD_5 +

3 Tot_P_FP + sqrt(Tot_Indigenous_PP) +

4 # standard random effects for area's

5 (1|M_id) +

6 # standard random effects for time point's

7 (1|T_id),

8 # specify the Bernoulli family

9 family = binomial,

10 data = df,

11 # sample scaled weights

12 weights = w_ss)

13

14 # no area-level covariates

15 fit2 <- glmer(y ~ ageg*sex +

16 (1|M_id) + (1|T_id),

17 family = binomial,

18 data = df,

19 weights = w_ss)

20

21 # Compare AIC and BIC

22 AIC(fit1); AIC(fit2)

23 BIC(fit1); BIC(fit2)

R Code 11: Variable selection for MrP models using the frequentist R package lme4. Note that these frequentist
models still take around 20 minutes to fit, given the size of the individual-level survey data.

In addition to selecting covariates that provide smaller AIC and BIC, one should continue
to investigate how the modelled prevalence estimates behave and ensure these align with
known associations. The estimates should be plausible; if they are not then the variables
are inadequate or the model has been incorrectly specified.

5.4.2 FHELN ST

Since the area-level models can be fitted far faster than the individual-level models, we
recommend using Bayesian variable selection methods. Fortunately mcmcsae automatically
calculates WAIC and this can be accessed using compute WAIC(fit) (Das et al. 2021). Models
with smaller WAIC should be preferred.
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Consider! Small area estimation for non-binary variables

The methods described in Section 5 can be easily applied to continuous outcomes with
some small adjustments.

At the individual level, the WMrP ST model can be applied to continuous variables,
yjit ∈ R, by replacing the first two lines of (5.1) with,

yjit ∼ N
(
µjit, σ

2
)wjit

µjit = α+Xjitβ + θi + γt,

and placing a prior on σ.
At the area-level, assume that µ̂it ∈ R and ψ̂it ∈ R+ are the direct estimates and

sampling variances for area i and time t, respectively. The FH model is specified by
replacing the first two lines of (5.8) with

µ̂it ∼ N
(
µit, ψ̂it

)
µit = α+Xitβ + si + vi + γt,

where µit is the estimate for area i and time t.

DOHWA, QUT



6 BURDEN OF DISEASE DATA 72

6 Burden of Disease data

Burden of disease is generally reported via two key metrics; years of life lost (YLL) and years
lived with disability (YLD). Disability-adjusted life years (DALY), is the summation of YLL
and YLD and thus we restrict our discussion to models for YLL and YLD only.

There is a significant dearth of literature relating directly to Bayesian small-area mod-
elling of the burden of disease, but MacNab (2007) shows that the class of models used
for modelling YLLs and YLDs are identical to those used in standard disease mapping
applications (see Section 3). We extend some of these approaches to accommodate any
non-registry-based data (see Tables 12 and 13). Similar to the administrative data, mod-
els should be fit to females, males and persons separately. The exception is the WMrP ST
model, which should be fitted to all the survey data.

Input data by

Model BoD
Metric Area Year Age Input data Offset term

Key model
output
calculation

Software Code Eq.

ASRA ST YLL,
YLD ✓ ✓ ✓

Counts/Point
prevalence

Population/adjusted
population

Fitted counts
(then
calculate YLL
or YLD)

nimble 5 (4.5)

ASRAME ST YLD ✓ ✓ ✓

Prevalence
estimates
and
sampling variances

Adjusted population

Fitted counts
(then
calculate YLL
or YLD)

nimble 15 (6.1)

WMrP ST YLD Individual-level
survey data

Binary
outcome NA Fitted

probabilities§ nimble 7 (5.1)

Table 12: Summary of models for burden of disease data. §Required point prevalence estimates are derived from
the fitted probabilities given by the WMrP ST model and then used to derive YLDs. All models can be used to
derive ASYLDs and ASYLLs (see Section 8.3). Approximate run time for these models is of the order of days to
weeks.

6.1 YLL

To model YLL, one requires raw mortality counts for each area, year and age (AYA). Smooth-
ing of the raw mortality counts proceeds identically to the ASRA ST model used for admin-
istrative data (see Table 4), where one also requires the population for each AYA (see Section
4.2.2).

To derive YLLs by area and year, we multiply the fitted counts, µita, from the ASRA ST
model by a standard life expectancy table (which is generally given by single ages).

Y LLit =
∑
a

µitaLa

As shown in (8.3), La denotes the life expectancy at age a.22

Correct calculation of the smoothed YLLs requires raw counts and populations by single
ages. This requirement can make the input mortality data very large for the ASRA ST model.
From our empirical investigations, we found that the estimated YLLs were extremely similar

22Life expectancy is defined as the expected number of years until death at age a.
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when collapsing the single age data to data with 18 age groups instead. Collapsing the data
involves summing the corresponding yita’s and Nita’s and calculating the median of the life
expectancies.23

Regardless of the age groupings used, the ASRA ST model can also be used to derive
age-standardised YLLs (ASYLL), smoothed mortality counts and age-standardised mortality
ratios (ASMR) (see Section 8.3), through using the posterior draws of the fitted counts.

For details of fitting the ASRA ST model in nimble, see Section 4.2.2. When fitting single
ages, we recommend using age as a continuous (as opposed to a categorical) covariate and
including a quadratic term to accommodate the faster decline of overall health in older age.
Code 12 shows how to create the QR decomposition for use in Code 5. See Section 8.8 for
details on the QR decomposition.

1 # prepare design matrix for ASRA_ST model with single years

2 xdm <- model.matrix(~age_single_year +

3 I(age_single_year^2),

4 data = df)

5 QR <- jf$getQRDecomp(xdm)

R Code 12: Constructing the design matrix (and QR decomposition) where age is added as a continuous quadratic
effect. Note that q = 2 here.

6.2 YLD

Unlike YLLs, which are derived from registry mortality data, YLDs are generally derived from
prevalence data, which themselves are estimated from a range of data sources including
registries and surveys. We denote the point prevalence (PP) for age a, area i and time t as
yita. To generate smoothed YLDs by area and year, one requires the posterior distribution of
µita, which can be derived from one of three recommended models: ASRA ST, ASRAME ST
or WMrP ST (see Table 12).

Following the flowchart in Figure 18, the recommended model (shown in yellow) and
any pre-processing (shown in red) depends on the type (individual-level or aggregated) and
availability (with or without error) of prevalence data. In this project, we recognise four
distinct types of PP data which are classified in Table 13.

23We acknowledge the crudeness of collapsing life expectancy this way. In practice, we would recommend exper-
imenting with how results differ when using the mean or median of life expectancy.
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Prevalence derived
from Input data by

Data
type

Point
prevalence
estimate

Error‡ Survey
data

Registry
data

Area,
Year, Age

Individual-
level Model

1 ✓ ✓ ✓ ASRA ST
2 ✓ ✓ ✓ ASRA ST
3 ✓ ✓ ✓ ✓ ASRAME ST
4 ✓ ✓ WMrP ST

Table 13: Overview of the four kinds of prevalence data. ‡ Sampling variance for the point estimate.

As touched on above, modelling prevalence data requires several pre-processing and
post-processing steps depending on the data and model. In the pre-processing stage, we
must ensure that any error is accommodated (e.g. simulated) and all PP values are valid
integers by applying the non-integer count adjustment (see Section 8.7). We’ll discuss sim-
ulating the point prevalence distributions in Section 6.2.2. Be aware that pre-processing is
not required when we have individual-level data.

YLDs are calculated by weighting the fitted PP according to the severity of the condition.
These disability adjustments are applied by first splitting the AYA fitted PPs into health
states. After applying these adjustments, the final area-by-year YLDs and age-standardised
YLDs (ASYLD) can be easily derived by summing over the health states (see Section 8.3 and
more specifically, (8.5)). Observe that the same post-processing steps are applied regardless
of the model used to derive the AYA fitted PPs (see Figure 18). Code 13 illustrates these
post-processing steps.
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Figure 18: Flowchart illustrating how models for YLD should be selected based on the data. Observe how all
models provide age, year and area (AYA) fitted point prevalence (PP) estimates (given as the posterior draws).
Regardless of the model used to derive these, we apply the disability adjustment to the posterior draws of the AYA
fitted PP, to obtain the area-by-year YLDs. Details of simulating the PP distributions can be found in Section 6.2.2,
the non-integer count adjustment in Section 8.7 and disability adjustment in Section 8.3 and Code 13. Details of
the likely data sources (blue boxes in the flowchart) can be found in Table 13.
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1 # create Z matrix of disability and prevalence weights

2 # Z has H rows and 1 column

3 Z <- matrix(with(HS_prev, HS_prev*disability_weight), ncol = 1)

4 # HS_prev is a dataframe of H rows

5

6 # complete the for-loop

7 # matrix is number of iterations (D) by n_obs (MTA)

8 YLD_MTA_draws <- matrix(NA, nrow = D, ncol = n_obs)

9 for(i in 1:D){

10 # repeat each observation for each health state

11 cur_it <- matrix(rep(mu_draws[i,], H), ncol = H, byrow = F)

12 # cur_it is n_obs (MTA) by H

13 YLD_MTA_draws[i,] <- as.numeric(cur_it %*% Z)

14 # (n_obs times H) (H times 1) =

15 # (n_obs times 1) -> aka a vector

16 }

17

18 # Collapse across age

19 # function for each iteration of fitted draws

20 foo <- function(x){aggregate(x, # repeat for each hlth_st

21 list(df$MT_id), # same for area

22 sum)$x}

23 # collapse to area and time level

24 yld_MT_draws <- t(apply(YLD_MTA_draws, 1, foo))

R Code 13: Deriving the posterior YLDs from fitted posterior draws, (mu draws).

6.2.1 Applying the ASRA ST model to prevalence data

Although point prevalence data for some conditions are estimated from survey data, similar
data for other conditions can be derived from hospital or registry data. For registry point
prevalence data (data type 1), we simply use the ASRA ST model to estimate smoothed YLDs.
We also recommend the ASRA ST model for point prevalence data (data type 2) where the
uncertainty is not available or cannot be quantified. Data types 1 and 2 take the middle
route in Figure 18.

6.2.2 Model: ASRAME ST

For some of the burden of disease data (data type 3 in Table 13), year by area by age point
prevalence data is derived by applying age-specific prevalence rates for the entire state to
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each year and area population. See Table 14 for an example of the data structure.

age p hat age psi hat age M id T id N y hat

p̂a ψ̂a a i t Nita ŷita
0.0527 0.0018 3 1 1 1331 70.0775
0.0603 0.0008 4 1 1 1293 77.9305
0.1382 0.0030 5 1 1 1019 140.8622
0.0858 0.0010 6 1 1 1128 96.8247
0.1303 0.0012 7 1 1 1007 131.1961
0.0527 0.0018 3 2 1 2355 123.9914
0.0603 0.0008 4 2 1 2514 151.5215
0.1382 0.0030 5 2 1 2810 388.4423
0.0858 0.0010 6 2 1 3455 296.5687
0.1303 0.0012 7 2 1 3560 463.8116
0.0527 0.0018 3 3 1 213 11.2145

...
...

...
...

...
...

...

Table 14: Example data as input to the ASRAME ST model. In the table, p̂a and ψ̂a are the prevalence (proportion)
estimates and sampling variances for age a, respectively. Moreover, ŷita and Nita are the point prevalence (count)
estimates and populations in age a, area i and time t, respectively. Observe that the prevalence estimates and
variances are constant regardless of the area and year, while the point prevalence, ŷita, is unique for each row.

To accommodate the uncertainty of the age-specific prevalence rates used in these cal-
culations, we assume access to prevalence estimates, p̂a ∈ (0, 1), and sampling variances,
ψ̂a, or point prevalence estimates, ŷa, and sampling variances, var (ŷa), for age group a . We
can easily convert between point prevalence data (count e.g., estimated number of people
with asthma in an area) and prevalence data (proportions e.g., proportion of people with
asthma in an area) using

p̂a =
ŷa
Na

,ψ̂a =
var (ŷa)
N2
a

.

To derive AYA point prevalence data (PP) we multiple the prevalence by the population,

ŷita = p̂aNita,

a method which can be easily verifed from Table 14.
With access to a point estimate and measure of uncertainty (i.e. error) we can consider

a distribution of the PP as the observed data when modelling with the ASRA ST model.
Although one could assume normality for the distribution of the PP data directly (i.e. ŷita ∼
N (yita, var (ŷita)), we found that using the prevalence (e.g. proportion) data initially and then
transforming these to counts provides a more flexible approximation to the PP distribution.

Figure 19 illustrates that a Beta distribution (being naturally bounded between 0 and
1) is a great candidate distribution for the underlying prevalence (e.g. proportion) data, by
comparing the distribution of the PP for two extremes. For very small PP values, using
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Figure 19: Example of the approximate distribution of two point prevalence (counts) — one small and one large
— using U = 10, 000. The plots compare approximating the distributions using a Beta distribution as opposed
to a normal distribution. The vertical lines represent the medians of the densities. The top plot displays the
approximate density when the point prevalence is very low, while the bottom plot compares the Beta and normal
simulations when the point prevalence is very high.

a normal distribution as opposed to a Beta gives a different distribution: the tails of the
normal density are far greater than that of the Beta (top plot). Furthermore, we expect the
distribution of point prevalence (counts) to be very skewed as the values approach zero: a
bell curve (aka a normal) does not exhibit this behaviour. For large PP estimates (bottom
plot in Figure 19), the Beta and normal simulate very similar distributions.

Here we describe the pre-processing step of simulating the PP distribution (see Figure
18). In this project we use a Beta distribution to approximate the distribution of the preva-
lence for each age group. To achieve this, first simulate U random draws from the correct
Beta distribution, p(u)a ∼ Beta

(
p̂a, ψ̂a

)
and multiply each draw by its corresponding area by

age by year population, Nita. The result is a matrix with M × T × A rows and U columns
where row ita gives an approximation to the distribution of the PP (counts) for age a, area i,
and time t. We will eventually use a model very similar to the ASRA ST model (see Section
4.2.2), and so we use the non-integer count adjustment trick (see Section 8.7) on the ma-
trix of PP draws to return ỹ ∈ R(M×T×A)×U and Ñ ∈ R(M×T×A)×U . For simplicity we take the
median of the U Ñita’s for use in the models, and denote them ̂̃N ita (see line 14 in Code 14).

Fortunately, the above steps are all performed within the user-defined jf$rbetaMP(.)
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function, which returns a list of the required matrices.

1 dist_counts <- jf$rbetaMP(# Number of simulations per observations

2 U = 100,

3 # vector of p_hat

4 mu = df$age_p_hat,

5 # vector of psi_hat

6 var = df$age_psi_hat,

7 # vector of population sizes

8 pop = df$N)

9

10 # Matrix of y_tilde (n_obs x U) (rounded point prevalence)

11 y_tilde = dist_counts$y_tilde

12

13 # take the median of the draws of N_tilde (vector of length n_obs)

14 N_hat_tilde = apply(dist_counts$N_tilde, 1, median)

R Code 14: Example code to simulate U draws from the approximate distribution of point prevalence distribution
prior to using the ASRAME ST model.

Given that the input data for a single observation is now a vector, we must be wary
that the certainty of the posterior distribution will now be dependent on U . To fix this, we
weight our likelihood term with 1/U ; an approach similar to that described in Section 5.2.1.
We provide a user-written nimble function, dpois me v(.), which calculates the correct den-
sity.24 The only difference between Code 5 and the ASRAMA ST model is the definition of
the likelihood and the use of ̂̃N ita as the offset. Simply swap lines 3-16 in Code 5 for those
in Code 15.

24Note that setting U = 1 in dpois me v(.) would give the standard Poisson density, but vectorised.
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1 for(i in 1:n_obs){

2 # likelihood

3 y_tilde[i,1:U] ~ dpois_me_v(mu[i], U = U)

4 # mean - linear predictor

5 log(mu[i]) <- log(N_hat_tilde[i]) + alpha

6 # Fixed effects using the inner product

7 + inprod(B_qr[1:q], Q_ast[i,])

8 # BYM2 spatial term

9 + theta[M_id[i]]

10 # ICAR temporal term

11 + gamma[T_id[i]]

12 # Space time term

13 + delta[MT_id[i]]

14 }

R Code 15: Difference in BUGS syntax between the ASRA ST and ASRAME ST model.

By letting ỹita =
(
ỹ
(1)
ita , . . . , ỹ

(U)
ita

)
be the vector of U simulations of the point prevalence in

age group a, area i and time t, the full measurement error Poisson model is constructed as
follows.

ỹita ∼ Poisson (µita)
1/U (6.1)

log (µita) = log
( ̂̃N ita

)
+ α+Xitaβ + θi + γt + δit

θ ∼ BYM2
(
WS, ρ, κ, σ2

θ

)
γ ∼ ICAR(WT, σ2

γ)

δti ∼ N
(
0, σ2

δ

)
ρ ∼ Uniform(0, 1)

σθ, σγ , σδ ∼ Gamma(2, 0.5)

α,β ∼ N
(
0, 10002

)
Figure 20 illustrates how the measurement error model affects the posterior standard

deviation (uncertainty) of smoothed YLD estimates. Note that the measurement error model
took over 21 times longer to fit than the standard ASRA-style model.
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(a) (b)

(c) (d)

Figure 20: Comparison of the smoothed YLDs for the 137 LGAs in Western Australia from a spatial only version of
the ASRA S and ASRAME S models. The data is the prevalence of backpain in males for 2015. Plot (a) compares
the posterior medians of the smoothed YLDs from the two models. Observe the perfect agreement between both
approaches as all points sit on the grey line of equivalence. Plot (b) compares the posterior RSE for the two models.
As expected, the RSEs for the ASRAME S model are higher than those for the ASRA S model. To help compare
the two models, plots (c) and (d) each display the posterior YLDs of two different and randomly selected LGAs.
Plot (d) shows strong consistency between the two models (i.e. overlapping posterior distributions), whilst plot (c)
illustrates when the two models produce very different posterior YLDs. However, take note of the scale of the YLDs
in plots (c) and (d); we may not change our policy decision if the modelled YLD is 1.4 as opposed to 1.53.

6.2.3 Applying the WMrP ST model to prevalence data

The final scenario (see Table 13) is when one has access to the individual-level HWSS survey
data from which one can derive prevalence point estimates directly (data type 4). In this
case, YLD modelling becomes SAE. Note that we cannot use the FHELN ST model as we
require estimates by age.
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Assuming access to the posterior draws of p̂ita — the proportion of people in age group
a, area i and time t with the condition of interest — we can derive the area-by-year YLDs for
the dth posterior draw using the following,

Y LD
(d)
it =

∑
a

∑
h

p̂
(d)
itaNitapheh.

Deriving the modelling estimates, p̂ita, follows that described in Section 5.2.1, so no
further details are given here.
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7 Conclusion

We have recommended different Bayesian models and processes for three types of data,
namely, administrative data (Section 4), survey data Section (5) and burden of disease data
(Section 6), based on:

• our previous similar projects such as the Australian Cancer Atlas (Duncan et al. 2019),

• extensive research in the application of Bayesian modelling methods in disease map-
ping and epidemiological studies, and

• feedback from epidemiological and spatial analysis experts from the DOHWA.

Some models are computationally demanding, and all models require careful checking
of convergence and model fit (Section 2), but the benefits are huge. Bayesian ST modelling
can:

• provide robust estimates

– for all areas (e.g. SA2s and LGAs)

– for areas where conventional statistical modelling and epidemiological analysis
would fail

• provide measures of uncertainty to give users the confidence when using such esti-
mates in health policy development and health program evaluation

• protect data confidentiality

Bayesian disease mapping for small area analysis is feasible, useful and reliable across
all desired measures and datasets for this project. A summary of our model recommenda-
tions can be found in Figure 22.
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8 Appendix

Please refer to Tables 1 and 2 for a summary of the indices and notation used in this report.
Further notation details can be found in the next section.

8.1 Introduction to mathematical notation

Vectors and Matrices As per convention, vectors and matrices will be bold while scalars
will not be. For example, y could denote the following vector (collection) of numbers, (4, 5, 6),
while x (unbolded) could represent a single number (or scalar), for example, 2. Generally we
define the size of vectors and matrices using the ∈ notation, which means in. For example,
we could define y one of two ways

y = (4, 5, 6)

y ∈ R3,

where R denotes the real numbers. In terms of understanding statistical models, the
second line above is more succinct and would be interpreted as follows: “The object y is a
vector with 3 elements, all of which are real numbers.”25

Note that in practice, the actual numbers will never be given. For example, you’ll see
notation such as y = (y1, . . . , yn), which is interpreted as: “The object y is a vector with n

real-valued elements”. Remember we could also write this as y ∈ Rn, where n may denote
our sample size.

Matrices can be defined in a similar way. Consider the following matrix.

A =

0 1 0 0

1 0 1 0

0 1 0 1


An efficient way to describe this matrix is by using the ∈ notation as before. We would

write, A ∈ R3×4, which would be interpreted as: “The object A is a matrix with 3 rows and
4 columns, all of which are real numbers.”

It is easy to select specific elements of vectors and matrices using indexes. Consider
again the vector y = (4, 5, 6). By writing y2, we recover the second element, 5, of the vector
y. Now that we have indexed (or chosen) a specific value from the vector, the object is a
scalar and thus is no longer bold. To recover a scalar from a matrix (say A from above), we
must provide two indices; the first for the row and the second for the column. For example,
A12 = 1. If only a single index is provided, assume that we are selecting a row. As a row of
a matrix is a vector, the notation remains bold. For example, A1 = (0, 1, 0, 0).

25In this report we consider all vectors as column matrices. For example, y ∈ R3, implies y ∈ R3×1
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Summation The notation for addition is
∑

. Suppose we wish to sum across each row
of the matrix A, where i indexes the rows and k indexes the columns. The notation to
communicate this is:

Ai =
∑
k

Aik

which is a succinct way to write Ai = (Ai1+Ai2+Ai3+Ai4). We can also be more specific
and write the summation as:

Ai =

4∑
k=1

Aik

Finally, we can sum all the elements in A by writing

∑
i,k

Aik.

Matrix multiplication It will be useful to have at least a rudimentary understanding of
matrix multiplication to understand the notation in this report. Consider the following two
matrices,

A =

0 1 0 0

1 0 1 0

0 1 0 1

 ∈ R3×4,B =


2

1

−1

8

 ∈ R4×1,

and their multiplication,

C = AB =

0 1 0 0

1 0 1 0

0 1 0 1


︸ ︷︷ ︸

3×4

×


2

1

−1

8


︸ ︷︷ ︸
4×1

=

11
9


︸︷︷︸
3×1

.

which is equivalent to

Cik =

4∑
h=1

AihBhk
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for the ith row and kth column of C.
It is pivotal to understand matrix multiplication to be able to write linear models in a

very succinct manner. Consider the following vectorized linear model (i.e. where all the
elements of the formula are either vectors or matrices).

y = Xβ + ϵ

In this case, the objects are of the following dimension, y ∈ RN ,X ∈ RN×q,β ∈ Rq, ϵ ∈ RN ,
where q is the number of covariates in the model and N is the sample size. Note that by
multiplying X and β, we recover a column matrix of size N . That said, in most cases it is
clearer to explicitly index the observations. Observe that now yi and ϵi are scalars and thus
no longer bold.

yi = Xiβ + ϵi

However, note that both Xi and β remain bold as both are still vectors. Xi is a row vector
as we have selected the ith row of X while β remains the same. In this case, the matrix
multiplication below (often called the dot product or inner product),

Xi︸︷︷︸
1×q

β︸︷︷︸
q×1

gives a matrix of dimension 1× 1; a scalar. The nimble equivalent code to achieve the dot
product is inprod(beta[1:q], X[i,]).

Matrix multiplication can also be used to speed up computation in R and provide cleaner
code. Consider the following linear predictor, ηit, for area i and time t. We use a spatial,
temporal and space-time random effect, see Section 3 for more details. For this simple
example, let M = 3, T = 2.

ηit = α+ θi + γt + δit

Now we construct a random effect design matrix as follows,
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G =



1 0 0 1 0 1 0 0 0 0 0

1 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 1 0 0 0

0 1 0 0 1 0 0 0 1 0 0

0 0 1 1 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0 0 0 1


∈ R(MT )×(M+T+MT ),

along with the following vector,

λ = (θ,γ, δ) ∈ R(M+T+MT )×1.

Note that G has the same number of rows as observations (here 3× 2 = 6) and a column
for each of the unique values of each of the random effect (here 3 + 2 + (3 × 2) = 11). The
column vector, λ, holds all the random effects in the specified order. Using this matrix and
vector, we can rewrite the linear predictor from above in a vectorized form where η ∈ RMT .

η = α+Gλ

To illustrate this explicitly, consider the linear predictor value for area 1 and time 1. Note
that unlike previously, now G11 selects a specific row, rather than a row and column.

η11 = α+G11λ

η11 = α+ [1× θ1 +���0× θ2 +���0× θ3 + 1× γ1 +���0× γ2+

1× δ11 +����0× δ12 +����0× δ21 +����0× δ22 +����0× δ31 +����0× δ32 ]

η11 = α+ θ1 + γ1 + δ11

Observe that we recover the linear predictor we would expect under the original form.
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8.2 ICAR prior

As described in Section 3.3.1, the ICAR prior for a RE, si, is described by the following
conditional normal distribution,

si ∼ N

(∑M
k=1W

S
iksk

mi
,
σ2
s

mi

)

Returning to the example in Figure 7, by using the ICAR prior, the distribution for s1 can
be derived as follows. First we observe that area 1 is neighbours with areas 2 and 5. Thus,
m1 = 2. Now consider the numerator of the mean,

∑M
k=1W

S
iksk. By fixing the row index to 1,

we recover,

M∑
k=1

W S
1ksk = (0× s1) + (1× s2) + (0× s3) + (0× s4) + (1× s5) + (0× s6)

M∑
k=1

W S
1ksk = s2 + s5

Then the mean of the conditional normal distribution for s1 becomes s2+s5
2 : the mean of

the random effects of the neighbours. With that we can write the ICAR distribution for si
as,

s1 ∼ N

(
s2 + s3

2
,
σ2
s

2

)
.
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8.3 Epidemiology metrics

In this section, we describe the key epidemiology metrics used in this project and present
the maths to derive them.

For clarity we present some common notation here. Note that while yita denotes the raw
counts for age a in area i and time t, ya denotes the total raw counts for age a (i.e. summed
across all areas and time points).

• N2001
a be the 2001 Australian Standard Population in age group a

• N2001 be the total 2001 Australian Standard Population

• yita be the raw counts for age a in area i and time t

• Nita be the current population size for age a in area i and time t

• rita = yita
Nita

be the crude rate for age a in area i and time t

• ra = ya
Na

be the crude rate for age a

Standardised incidence ratio (SIR) As noted in Section 4, SIRs are identical to SMRs
and SRRs.

Eit =
∑
a

raNita

SIRit =
yit
Eit

(8.1)

By construction
∑
i,tEit =

∑
i,t yit.

Age-standardised rates (ASR) We use direct standardisation to calculate the ASR for area
i and time t.

E2001
it =

∑
a

ritaN
2001
a

ASRit =
E2001
it

N2001
, (8.2)

Years of life lost (YLL) Let yita be the number of deaths from a condition in age a, area i

and time t. In addition, let La be the life expectancy at age a. Life expectancy is defined as
the expected number of years until death at age a.

Y LLita = yitaLa

Y LLit =
∑
a

Y LLita (8.3)
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Age-standardised YLLs (ASYLLs) can be derived as follows.

Y LLrita =
Y LLita
Nita

E2001
it =

∑
a

Y LLritaN
2001
a

ASY LLit =
E2001
it

N2001
(8.4)

Note that Y LLrita is the years of life lost per person in age a, area i and time t.

Years lived with disability (YLD) Let yitah be the number of persons (with a particular
condition) in health state h, age group a, area i and time t. To derive YLDs for this project,
we apply a health state specific disability weight, denoted eh.

Y LDitah = yitaheh

Y LDita =
∑
h

Y LDitah

Y LDit =
∑
a

Y LDita (8.5)

The age-standardised YLD (ASYLD) can be computed as well.

Y LDr
ita =

Y LDita

Nita

E2001
it =

∑
a

Y LDr
itaN

2001
a

ASY LDit =
E2001
it

N2001
(8.6)

In practice, we do not have access to counts by health state. Instead, yita is split into the
H health states using ph, which gives the proportion of persons with the disease that are
in health state h.26

yitah = yitaph

We use yita as input to our models and then apply both adjustments to the fitted values
via,

26ph is not the proportion of the total population in each health state, but the proportion of all persons with the
condition that are in health state h.
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Y LDit =
∑
a,h

µitapheh.

Disability-adjusted life years (DALY) DALYs are the summation of YLDs and YLLs.

DALYita = Y LLita + Y LDita

DALYit = Y LLit + Y LDit (8.7)

We can also derive the age-standardised DALYs (ASDALY).

DALY rita =
DALYita
Nita

E2001
it =

∑
a

DALY ritaN
2001
a

ASDALYit =
E2001
it

N2001
(8.8)

Relative Standard Error (RSE) Assume access to a point estimate, p̂, and its variance,
v (p̂), which can both be derived from posterior draws.

RSE (p̂) = 100×

(√
v (p̂)
p̂

)
(8.9)

Note that our user-made function jf$getResultsData() returns RSEs automatically. RSEs
rely on the assumption that the posterior variance is a valid measure of uncertainty. For
skewed posterior distributions this may not hold.

8.4 Offset term in Poisson models

Let yi and Ni be the raw count and population, respectively, in area i and ηi be the linear
predictor. The mean count, µi, is modelled using the log link.

log (µi) = log (Ni) + ηi

log (µi)− log (Ni) = ηi

log
(
µi
Ni

)
= ηi

µi
Ni

= exp (ηi)

Observe that µi

Ni
is the fitted rate in area i. Note that this proof can, of course, be extended

to ST settings.
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8.5 Non-mean centred parameterisation

There are a variety of methods to improve MCMC sampling efficiency. One such method
is the non-mean centred parameterisation,27 where instead of telling nimble to sample the
vector ϕ as

ϕi ∼ N(µ, σ),

we can instead use

Zϕi ∼ N(0, 1)

ϕi = µ+ Zϕi σ,

which is equivalent and can be far easier to sample. In many of the ST models we
recommend, the distribution for ϕi would be N(0, σ), which means the above form can be
simplified to

Zϕi ∼ N(0, 1)

ϕi = Zϕi σ.

Throughout the BUGS code given in this report you will see this trick used over and
over again (for example, lines 21, 43 and 55 in Code 5 alone). In some instances, the non-
mean centred parameterisation can completely solve any sampling issues you are having.
In practice it is best to check whether the mean-centred parameterisation is more efficient.
However for these complex models, we recommend using the non-mean centred parameter-
isation wherever possible.

8.6 ASR Adjustment

Instead of modelling the area by year by age group counts, one can instead model the area
by year counts and adjust the population accordingly to ensure that the derived quantities
are ASRs. With access to the crude, R = y/N , and age-standardised rates, ASR, we can
model the raw counts aggregated over age groups by observing the following identity, where
c is a adjustment factor.

c =
R

ASR
=

y
N

ASR
(8.10)

∴ ASR =
y
N

c
=

y

cN
(8.11)

27Please see Section 13.4 from McElreath (2020) for a deeper introduction.
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This result allows us to implicitly model the ASRs for each area and year. To achieve
this, we use the raw counts, y, as the observed data and Ñ = cN = y/ASR, as the offset.
When y = 0 then both the ASR and R are also zero. In these cases, set the offset to N .

8.7 Non-integer count adjustment

For particular data in this project, we must round any non-integer counts, y, to integers
before modelling (see Section 6.2). To ensure that inference is identical after performing the
rounding we use the following adjustment.

First, we round the non-integer counts using the ceiling operator,28 ⌈y⌉ = ỹ. Then we
introduce a corrective factor, c = ỹ

y , which is used to derive the adjusted offset term in our
Poisson models.

Ñ = cN

In most cases, c will be close to 1, unless the raw count is very small. Note that when
y = 0, c = 0 and thus Ñ = 0. In these cases, let Ñ = N .

The adjustment described above ensures that the rate (which is implicitly modelled using
Poisson models - Section 8.4) is the same regardless of the extent of rounding applied to y.

ỹ

Ñ
=

ỹ

cN
ỹ

Ñ
=

ỹ
ỹ
yN

∴
ỹ

Ñ
=

y

N

The user-made function jf$sIntRound(.) returns a data frame with the raw y,N and the
derived ỹ, Ñ . See Code 16 for an example of this code.

1 # int_ver is a dataframe with number of rows equal to `nrow(df)

2 int_ver <- jf$sIntRound(df$point_prevalence, df$N)

3

4 # Add N_tilde to data

5 df$N_tilde <- int_ver$N_tilde

6

7 # Add y_tilde to data

8 df$y_tilde <- int_ver$y_tilde

28The ceiling operation, ⌈.⌉, rounds non-integers to the closest upper integer which ensures that any y < 0.5 are
not rounded to zero, but instead to 1.
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R Code 16: Example code to perform the non-integer count adjustment.

8.8 QR Decomposition

In regression problems, the linear predictor, η = (η1, . . . , ηn), can be calculated using Xβ,
where the fixed effects, β ∈ Rq×1, are estimated using MCMC. Efficient MCMC estimation of
fixed effects is difficult when the design matrix, X ∈ Rn×q, has strongly correlated columns.

To improve convergence of the fixed effects, the design matrix can be factorized using
the QR decomposition,29 which factors the design matrix, X, into an orthogonal matrix,
Qast ∈ Rn×q (i.e a matrix where all columns are independent), and an upper-triangular
matrix, Rast ∈ Rq×q.

X = QastRast

Thus, one can rewrite the linear predictor as follows,

η = Xβ = QastRastβ = Qastβqr

βqr = Rastβ,

and sample the vector βqr as opposed to β, which can be considerably more efficient.
During sampling, one can easily calculate the actual regression coefficients using the iden-
tity, β = (Rast)−1βqr (see line 69 in Code 5). Note that it usually advisable to remove the
intercept column and then centre the design matrix prior to taking the QR decomposition.
These operations are automatically performed by the jf$getQRDecomp() function. See Code
17.

29A great introduction is given in the Stan (Stan Development Team 2022) user guide here.
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1 # Construct the design matrix (N times A)

2 xdm <- model.matrix(~as.factor(age), data = df)

3

4 # take the QR decomposition

5 QR <- jf$getQRDecomp(xdm)

6

7 # get the key matrices

8 Q_ast = QR$QR$Q_ast,

9 R_ast_inverse = QR$QR$R_ast_inverse

10

11 # no intercept

12 # mean centered (NOT SCALED)

13 X = QR$X_c

R Code 17: QR decomposition for fixed effect design matrices

Using the QR decomposition to derive estimates for out of sample data (i.e. the poststrata
dataset for MrP models), requires careful consideration. The centered design matrix must
use the same column means as the original design matrix passed to the model. Fortunately,
the jf$getQRDecomp() function allows the user to pass a vector of column means to be used
in the centring process. More details will be given in the training.

8.9 Output from Bayesian software

Figure 21 shows an example output from Bayesian software. The top command, SIRST fit$summary

prints the posterior summaries from the SIRST fit object. The summary component provides
details of the point estimates (blue boxes), uncertainty measures (green boxes) and conver-
gence diagnostics (yellow boxes) for each model parameter (column variable). For details
please review Section 2.

Note that the summary component provides summaries for all parameters from the model
(729 in this example) which include the variance terms (sigma2 theta, sigma2 delta, etc),
random effects (theta[1], theta[2], etc), and fitted values (mu[1], mu[2], etc) — not shown.

The bottom command, message(SIRST fit$messages), gives a MCMC convergence report(grey
box). This report describes the convergence diagnostics (yellow boxes) across all parame-
ters. The yellow arrows illustrate which columns of the summary component are reported in
the message(SIRST fit$messages) function. The first few lines provide details on the R̂, fol-
lowed by similar summaries for two measures of effective sample size (ESS). In the example,
we would be confident that our MCMC algorithm has converged; there are no parameters
with a R̂ > 1.01 or too low ESS. Please review Section 2.1 for details of these convergence
diagnostics.
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Figure 21: Example output after successfully fitting the SIR ST model using the wrapper function shown in Code 3. Note that digits coloured red are below zero
— a default option when using tibble.

D
O

H
W

A
,Q

U
T



8
A

PPE
N

D
IX

97

8.10 Recommended Bayesian models

Figure 22: Schematic displaying the three data types and how these relate to the seven recommended models and core metrics.
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